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Abstract—We consider solving a sequence of machine learning
problems that vary in a bounded manner from one time-step to
the next. To solve these problems in an accurate and data-efficient
way, we propose an active and adaptive learning framework,
in which we actively query the labels of the most informative
samples from an unlabeled data pool, and adapt to the change
by utilizing the information acquired in the previous steps. Our
goal is to satisfy a pre-specified bound on the excess risk at
each time-step. We first design the active querying algorithm by
minimizing the excess risk using stochastic gradient descent in
the maximum likelihood estimation setting. Then, we propose a
sample size selection rule that minimizes the number of samples
by adapting to the change in the learning problems, while
satisfying the required bound on excess risk at each time-step.
Based on the actively queried samples, we construct an estimator
for the change in the learning problems, which we prove to be an
asymptotically tight upper bound of its true value. We validate
our algorithm and theory through experiments with real data.

I. INTRODUCTION

Machine learning problems that vary in a bounded manner
over time naturally arise in many applications. For example, in
recommendation systems [1], the preferences of users might
change with fashion trends. Since acquiring new training
samples from users can be expensive in practice, a recommen-
dation system needs to update the machine learning model and
adapt to this change using as few new samples as possible.

In such problems, we are given a large set of unlabeled
samples at each time t, and the learning tasks are solved
by minimizing the expected value of an appropriate loss
function on this unlabeled data pool. To capture the idea that
the sequence of learning problems is changing in a bounded
manner, we assume the following bound holds

‖θ∗t − θ∗t−1‖2 ≤ ρ, ∀t ≥ 2, (1)

where θ∗t is the true minimizer of the expected loss function
at time t, and ρ is a finite upper bound on the change of
minimizers, which needs to be estimated in practice.

To tackle this sequential learning problem, we design an
active and adaptive algorithm to learn the approximate mini-
mizers θ̂t of the loss function. At each time t, the algorithm
actively queries the labels of Kt samples from the unlabeled
data pool, with an appropriately designed active sampling
distribution, which is adaptive to the change in the minimizers
by utilizing the information acquired in the previous steps.

Our contributions in this paper can be summarized as fol-
lows. We propose an active and adaptive learning framework

with theoretical guarantees to solve a sequence of learning
problems in the maximum likelihood estimation (MLE) set-
ting. The proposed algorithm ensures a bounded excess risk
for each individual learning task when t is sufficiently large.
We construct a new estimator of the change in the minimizers
ρ̂t with active learning samples and show that this estimate
upper bounds the true parameter ρ almost surely. We apply our
approaches in a recommendation system to track the changes
in preferences of customers. Our experiments demonstrate
that compared to the other baseline algorithms, the proposed
algorithm achieves a better accuracy performance while being
efficient in the use of training samples.

A. Related Work

The setting of our active and adaptive learning problem
is similar to online learning, where a sequence of learning
tasks arrive, and the goal is to minimize the regret over some
large time horizon [2]. Thus, the theoretical guarantee of
online learning is different from the per time-step excess risk
guarantee provided in this paper.

Our work has relations with active learning [3], in which
a learning algorithm is able to interactively query the labels
of samples from an unlabeled data pool to achieve better
performance. A standard approach to active learning is to
select the unlabeled samples by optimizing specific statistics of
these samples [4]. For example, with the goal of minimizing
the expected excess risk in maximum likelihood estimation,
the authors of [5], [6] propose a two-stage algorithm based
on the Fisher information ratio to select the most informative
samples, and show that it is optimal in terms of convergence
rate. We apply similar algorithms in our problem, but the first
stage of estimating the Fisher information using labeled sam-
ples to conduct active learning can be skipped by exploiting
the bounded nature of the change, and utilizing information
obtained in previous time-steps.

Our approach is closely related to prior work on adaptive
sequential learning [7], [8], where the training samples are
drawn passively and the adaptation is only in the selection of
the number of training samples Kt at each time-step.

II. PROBLEM DEFINITION AND SETTING

Throughout this paper, we use lower-case letters to denote
scalars and vectors, and use-upper case letters to denote
random variables and matrices. We use I to denote an identity
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matrix of appropriate size. We use the superscript (·)> to
denote the transpose of a vector or a matrix, and Tr(A)
to denote the trace of a square matrix A. We use ‖x‖A to
denote

√
x>Ax for a vector x and a matrix A of appropriate

dimensions.
We consider the active and adaptive sequential learning

problem in the MLE setting. At each time t, we are given
a pool St = {x1,t, · · · , xN,t} of Nt unlabeled samples
drawn from some instance space X . We have the ability to
interactively query the labels of Kt of these samples from
a label space Y . In addition, we are given a parameterized
family of distribution models M = {p(y|x, θt), θt ∈ Θ},
where Θ ⊆ Rd. We assume that there exists an unknown
parameter θ∗t ∈ Θ such that the label yt of xt ∈ St is actually
generated from the distribution p(yt|xt, θ∗t ).

For any x ∈ X , y ∈ Y and θ ∈ Θ, we let the loss function
be the negative log-likelihood with parameter θ, i.e.,

`(y|x, θ) , − log p(y|x, θ), p(y|x, θ) ∈M. (2)

Then, the expected loss function over the uniform distribution
on the data pool St can be written as

LUt
(θ) , EX∼Ut,Y∼p(Y |X,θ∗t )[`(Y |X, θ)], (3)

where we use Ut to denote the uniform distribution over the
samples in St. It can be seen that θ∗t is one of the minimizers
of LUt

(θ). As in (1), we assume that θ∗t changes at a bounded
but unknown rate, ‖θ∗t − θ∗t−1‖2 ≤ ρ, for t ≥ 2.

The quality of the algorithm outputs θ̂t are evaluated
through an excess risk criterion, which means that the excess
risk of θ̂t is bounded at each time-step t, i.e.,

E[LUt
(θ̂t)− LUt

(θ∗t )] ≤ ε. (4)

Thus, our goal is to actively and adaptively select the smallest
number of Kt samples in St to query labels, and sequentially
construct an estimate of θ̂t satisfying the above excess risk
criterion for each time-step t. Note that it is allowed to query
the label of the same sample multiple times.

Let Γt be an arbitrary sampling distribution on St, and

θ̂Γt , arg min
θ∈Θ

1

Kt

Kt∑
k=1

`(Yk,t|Xk,t, θ), (5)

where Xk,t ∼ Γt, Yk,t ∼ p(Y |Xk,t, θ
∗
t ).

III. ALGORITHM OUTLINE

We first provide an outline of the proposed active and
adaptive sequential learning algorithm. Our algorithm consists
of the following four steps, the technical details of which can
be found in Section IV.

1) Construct active learning sampling distribution Γ̂∗t based
on the estimation acquired in the previous step θ̂t−1,
which queries the labels of the most informative samples
(see Section IV-B).

2) Adaptively choose the minimal sample size K∗t based on
the estimated change in minimizers ρ̂t−1 to satisfy the
excess risk criterion (see Section IV-C).

Fig. 1. Active and adaptive sequential learning framework.

3) Query the labels of K∗t samples over the unlabeled data
pool St using Γ̂∗t , and estimate θ̂t by solving (5).

4) Update the estimate of change rate ρ̂t by using the
actively labeled samples (see Section IV-D).

By executing this procedure iteratively, we can sequentially
learn θ̂t over the considered time-steps. Fig. 1 illustrates our
active and adaptive sequential learning framework.

IV. ANALYSES AND THEORETICAL GUARANTEES

In this section, we present technical details and the the-
oretical analysis of our algorithm. We first introduce the
assumptions needed. The proofs of the theorems and lemmas
are presented in [9].

A. Assumptions
We require the following assumption on the Hessian matrix

of `(y|x, θ) to design the active sampling distribution over the
unlabeled data pool St.

Assumption 1. For any x ∈ X , y ∈ Y , θ ∈ Θ, H(x, θ) ,
∂2`(y|x,θ)

∂θ2 is a function of only x and θ and independent on y.

Assumption 1 holds for many practical models, such as
generalized linear model, logistic regression and conditional
random fields. Moreover, we denote The Fisher information
matrix with sampling distribution Γt is given by: IΓt

(θ) ,
EX∼Γt [H(X, θ)].

The following regularity assumptions are required to estab-
lish the Local Asymptotic Normality of the MLE (see [10]).

Assumption 2 (Regularity conditions).
1) Regularity conditions for MLE:

a) Strong Convexity: For each t and θ ∈ Θ, IUt
(θ) � mI

with m > 0, and hence IUt(θ) is positive definite.
b) Boundedness: For all θ ∈ Θ, the largest eigenvalue of

IUt
(θ) is upper bounded by Lb.

2) Concentration at θ∗t : For all t, and any xt ∈ St, yt ∈ Y ,∥∥∥∇`(yt|xt, θ∗t )
∥∥∥
IUt (θ∗t )−1

≤ L1 and∥∥∥IUt
(θ∗t )−1/2H(x, θ∗t )IUt

(θ∗t )−1/2
∥∥∥ ≤ L2

(6)

holds with probability one.
3) Lipschitz continuity: For all t, there exists a neighbor-

hood Bt of θ∗t and a constant L3, such that for all
xt ∈ St, H(xt, θ) are L3-Lipschitz in this neighborhood,
namely,∥∥∥IUt

(θ∗t )−1/2
(
H(xt, θ)−H(xt, θ

′)
)
IUt

(θ∗t )−1/2
∥∥∥

≤ L3‖θ − θ′‖IUt (θ∗t )

(7)
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holds for θ, θ′ ∈ Bt.

In addition, we need the following assumption to prove
that constructing the active sampling distribution using θ̂t−1

instead of θ∗t does not change the performance of the active
learning algorithm in terms of the convergence rate.

Assumption 3 (Point-wise self-concordance). For all t, there
exists a constant L4, such that

−L4‖θt − θ∗t ‖2H(x, θ∗t ) � H(x, θt)−H(x, θ∗t )

� L4‖θt − θ∗t ‖2H(x, θ∗t ).
(8)

This assumption is satisfied by many classes of models, e.g.,
the previously mentioned generalized linear model [5].

B. Active Sampling Distribution

The construction of Γt is motivated by the following lemma,
which is a refinement of a similar result given in [11] and [5].

Lemma 1. Suppose Assumptions 1 and 2 hold, and assume
Θt , {θt|‖θt − θ∗t−1‖ ≤ ρ} is known. For any sampling
distribution Γt on St, suppose that IΓt

(θ∗t ) � CIUt
(θ∗t ) holds

for some constant C < 1. Then, for sufficiently large Kt, such
that γt , O

(
1
C2 (L1L3 +

√
L2)
√

log dKt

Kt

)
< 1, the excess risk

of θ̂Γt can be bounded as

(1− γt)
τ2
t

Kt
− L2

1

CK2
t

≤E[LUt(θ̂Γt)− LUt(θ
∗
t )]

≤ (1 + γt)
τ2
t

Kt
+

2Lbρ
2

K2
t

(9)

for all t, where τ2
t , 1

2Tr
(
I−1
Γt

(θ∗t )IUt
(θ∗t )

)
.

Lemma 1 shows that when ρ and θ∗t−1 are known, the
convergence rate of the excess risk for θ̂Γt

defined in (5) is
Tr(I−1

Γt
(θ∗t )IUt

(θ∗t ))/Kt. Thus, the optimal sampling distribu-
tion Γ∗t should be

Γ∗t = arg min
Γt

Tr(I−1
Γt

(θ∗t )IUt
(θ∗t )). (10)

However, the true parameter θ∗t in (10) is unknown, and hence
we cannot solve Γ∗t directly. Exploiting the bounded nature of
the change in (1), we solve this problem by approximating θ∗t
with θ̂t−1 and generate the estimate of Γ∗t using

Γ̂∗t = arg min
Γt

Tr(I−1
Γt

(θ̂t−1)IUt
(θ̂t−1)). (11)

Note that Γ̂∗t may not have the full support of St, which
reduces the sampling diversity and further leads to biased
estimates. Thus, we modify the active sampling distribution
slightly by

Γ̄t = αtΓ̂
∗
t + (1− αt)Ut, (12)

where αt ∈ (0, 1) is chosen via cross-validation.
Another issue is that Lemma 1 only characterizes the

convergence rate for θ̂Γt
without considering the error caused

by optimization algorithm. In practice, we usually apply
stochastic optimization algorithms, such as stochastic gradient
descent (SGD) to find approximate minimizers in the original

parameter space Θ. For the purpose of bounding the excess
risk of the solution provided by SGD, we require the following
condition on the optimization algorithm adopted to solve (5).

Condition 1. Given an optimization algorithm that generates
an approximate loss minimizer

θ̂t , A
(
θ̂t−1, {∇θ`(yk,t|xk,t, θ)}Kt

k=1

)
using Kt stochastic gradients {∇θ`(yi,t|xi,t, θ)}Kt

k=1 with ini-
tialization at θ̂t−1, if E‖θ̂t−1 − θ∗t ‖22 ≤ ∆2

t , there exists a
function b(τ2

t ,∆t,Kt) such that

E[LUt
(θ̂t)]− LUt

(θ∗t ) ≤ b(τ2
t ,∆t,Kt), (13)

where b(τ2
t ,∆t,Kt) increases monotonically with respect to

τ2
t , ∆t and 1/Kt.

The bound b(τ2
t ,∆t,Kt) depends on the expectation of

the difference between the initialization and the true min-
imizer ∆t. As an example for this type of bound, for the
Streaming Stochastic Variance Reduced Gradient (Streaming
SVRG) algorithm in [11], it holds that b(τ2

t ,∆t,Kt) =

C1
τ2
t

Kt
+C2

(
∆t

Kt

)2
with constant C1 and C2. In addition, several

examples of the bound b(τ2
t ,∆t,Kt) with other variations of

SGD algorithm are given in [8].
We have the following theorem characterizes the conver-

gence rate of the proposed active learning algorithm.

Theorem 1. Suppose Assumptions 1, 2 and 3 hold, and let
βt , L4(ρ+ 1

δ

√
2ε
m ) < 1. Then, by using the active sampling

distribution given in (12), the excess risk of θ̂t which obtained
by solving the optimization algorithm satisfying Condition 1
initialized at θ̂t−1 is upper-bounded by

E[LUt
(θ̂t)− LUt

(θ∗t )] ≤ b(τ́2
t ,∆t,Kt), (14)

with probability 1-δ, where

τ́2
t =

(1 + βt
1− βt

)2 Tr
(
I−1
Γ∗t

(θ∗t )IUt
(θ∗t )

)
2αt

, ∆t =

√
2ε

m
+ ρ,

(15)
δ ∈ (0, 1) and Γ∗t is the optimal sampling distribution
minimizing Tr

(
I−1
Γ∗t

(θ∗t )IUt
(θ∗t )

)
.

C. Sample Size Selection Rule

1) Case where ρ is known: We first consider the ideal case
where ρ is known. If we can compute τ2

t and ∆t, the sample
size Kt can be simply determined by setting b(τ2

t ,∆t,Kt) in
Condition 1 to ε to satisfy the excess risk criterion.

However, θ∗t in τ2
t = 1

2Tr
(
I−1
Γt

(θ∗t )IUt(θ
∗
t )
)

is unknown in
practice. Thus, we use the fact that

Tr
(
I−1
Γ∗t

(θ∗t )IUt(θ
∗
t )
)
≤ Tr

(
I−1
Ut

(θ∗t )IUt(θ
∗
t )
)

= d, (16)

(recall d is the dimension of parameters) to get a conservative
bound b(d/2,∆t,Kt) to choose Kt, which works for the
uniform sampling distribution Ut.

To bound the difference between the initialization and the
true minimizer ∆t, we have the inequality E‖θ̂t−1 − θ∗t ‖22 ≤
(
√

2ε/m+ρ)2 following from the triangle inequality, Jensen’s
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inequality and the strong convexity in Assumption 2. This
inequality implies that ∆t =

√
2ε/m+ ρ.

Therefore, if ρ is known, we can set

K∗t = min
{
K ≥ 1

∣∣∣b(d/2,√2ε

m
+ ρ,K

)
≤ ε
}
, (17)

for t ≥ 2 to ensure that E[LUt(θ̂t)− LUt(θ
∗
t )] ≤ ε.

2) Case where ρ is unknown: In this case, we can replace ρ
with its estimate ρ̂t−1 to select the sample size. The following
theorem characterizes the convergence guarantee using the
sample size selection rule in Algorithm 1 and the estimator
of ρ̂t in Section IV-D.

Theorem 2. If we choose

Kt ≥ K∗t , min
{
K ≥ 1

∣∣∣b(d/2,√2ε

m
+ ρ̂t−1,K

)
≤ ε
}
,

then lim supt→∞
(
E[LUt

(θ̂t)]− LUt
(θ∗t )

)
≤ ε almost surely.

D. Estimating the Change in Minimizers

1) Estimating One-Step Change: As a consequence of
strong convexity, the following lemma holds.

Lemma 2. Suppose Assumption 2 holds, then

‖θ∗t−1 − θ∗t ‖2 ≤
1

m

[
LUt

(θ∗t−1)− LUt
(θ∗t )+

LUt−1
(θ∗t )− LUt−1

(θ∗t−1)
]
.

(18)

Motivated by Lemma 2, we can construct the following one-
step estimation of ρ2

ρ̃2
t =

1

m

[
L̂Ut

(θ̂t−1)− L̂Ut
(θ̂t) + L̂Ut−1

(θ̂t)− L̂Ut−1
(θ̂t−1)

]
,

where

L̂Ut(θ̂t−1) ,
1

Kt

Kt∑
k=1

`(Yk,t|Xk,t, θ̂t−1)

NtΓ̄t(Xk,t)
. (19)

Note that we are using the samples generated from the active
learning distribution, i.e., Xk,t ∼ Γ̄t and Yk,t ∼ p(Y |Xk,t, θ

∗
t ).

Thus, based on the idea of importance sampling, we normalize
the estimate with the sampling distribution Γ̄t.

2) Combining One-Step Estimates: Then, we com-
bine the one-step estimates to construct an overall es-
timate by using a class of window functions hW :
RW → R that are non-decreasing in their arguments
and satisfy E[hW (ρj , · · · , ρj−W+1)] ≥ ρ. For example,
hW (ρj , · · · , ρj−W+1) = W+1

W max{ρj , · · · , ρj−W+1} satis-
fies the requirements. The combined estimate of ρ́2

t is com-
puted by applying the function hW to a sliding window of
one-step estimates of ρ̃2, i.e.,

ρ́2
t =

1

t− 1

t∑
j=2

h{min[W,j−1]}(ρ̃
2
j , ρ̃

2
j−1, · · · , ρ̃2

max[j−W+1,2]).

The following theorem characterizes the performance of pro-
posed estimator.

Theorem 3. Suppose Assumptions 1 and 2 hold, and there
exists a sequence {rt} 1 satisfying

∞∑
t=1

exp
{
− 2m2(t− 1)r2

t

9L2
bDiameter4(Θ)

}
<∞.

Then, for all t large enough, ρ̂2
t , ρ́2

t +Dt + rt ≥ ρ2 almost
surely with constant Dt specified in [9].

E. Algorithm

Our active and adaptive sequential learning algorithm is
formally presented in Algorithm 1.

Algorithm 1 Active and Adaptive Sequential Learning
Input: Sample pool St = {x1,t, · · · , xN,t}, previous esti-
mates θ̂t−1, ρ̂t−1 and the pre-specified excess risk ε.
1: Solve the following semi-definite programming problem

Γ̂∗t = arg min
Γt∈RNt

Tr[I−1
Γt

(θ̂t−1)IUt
(θ̂t−1)]

s.t.

{
IΓt(θ̂t−1) =

∑Nt

i=1 Γi,tH(xi,t, θ̂t−1),∑Nt

i=1 Γi,t = 1, Γi,t ∈ [0, 1].

2: Choose K∗t based on ρ̂t−1 such that it is the minimum
number of samples required to meet the excess risk criterion.
3: Generate K∗t samples using the distribution Γ̄t =
αtΓ̂

∗
t + (1 − αt)Ut on unlabeled data pool St, where

αt ∈ (0, 1). Query their labels and get the labeled set
S ′t = {(xk,t, yk,t)}

K∗t
k=1.

4: Solve the MLE using labeled set S′t with a SGD algorithm
initialized at θ̂t−1,

θ̂t = arg min
θt∈Θ

∑
(xk,t,yk,t)∈S′t

`(yk,t|xk,t, θt).

5: Update the estimate of ρ̂t using estimator defined in
Theorem 3 for ∀t ≥ 2.
Output: θ̂t, ρ̂t.

In Step 1, the active sampling distribution is constructed via
solving a semi-definite programming (SDP) problem. Then,
we use the minimum sample size K∗t such that the excess
risk criterion is satisfied, and actively draw samples from Γ̄t
to estimate θ̂t (Steps 2-4). As stated earlier, the distribution
Γ̂∗t is modified slightly to Γ̄t in Step 3 to ensure it still has the
full support of St. Finally, based on the current and previous
estimates θ̂t and θ̂t−1, we update the estimate of the bounded
change rate ρ̂t using the result in in Theorem 3.

V. EXPERIMENTS

In this section, we utilize a subset of Yelp 2017 dataset 2

to perform our experiments to validate our algorithm and the
related theoretical results. We select the users that have at least
10 ratings from the original dataset and construct the dataset
for this experiment. Our dataset contains ratings of M = 473

1Note that a choice of rt that is greater than 1/
√
t− 1 in the order sense

works here.
2https://www.yelp.com/dataset
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(a) (b) (c)

Fig. 2. Experiments on user preference tracking: (a) Excess risk. (b) Estimated rate of change of minimizers. (c) Classification error.

users for N = 858 businesses. By converting the original 5-
scale ratings to a binary label for all businesses with high
ratings (4 and 5) as positive (1) and low ratings (3 and below)
as negative (−1), we form the N ×M binary rating matrix
R, which is sparse and only 2.6% are observed. We complete
the sparse matrix R to make recommendations by using the
matrix factorization method [12]. The rating matrix R can be
modeled by the following logistic regression model

p(Ru,b|φb, φu) =
1

1 + exp−Ru,bφ>u φb
, (20)

where φu and φb are the d-dimensional latent vectors repre-
senting the preferences of user u and properties of business b,
respectively. Then, we train φu and φb with dimension d = 10
for each user and business in the dataset using maximum
likelihood estimation by SGD. With the learned latent vectors,
we can complete the matrix R and make recommendations to
customers in a collaborative filtering fashion [1].

In practice, the preferences of users φu,t may vary with time
t, and hence user features need to be retrained. Considering
the fact that acquiring new ratings of users can be expensive,
we apply our active and adaptive learning algorithm to reduce
the number of new samples while maintaining a desired level
of accuracy.

In the following experiment, we use a random subset of
{φb} with size Nt = 400 as our unlabeled data pool, while
the remaining serve as a test set to evaluate the algorithms. To
model the bounded time-varying changes of user preferences
φu,t, we start from a randomly chosen user feature and update
it by adding a random Gaussian drift with norm bounded by
0.1 at each time-step. Since we are unable to retrieve the
actual answer from a real user, we generate the labels with the
probabilistic model given by (20) with true parameter φu,t.
The target excess risk ε = 0.75 is set by cross-validation,
which ensures the error rate (percentage of errors on the test
set) is smaller than 10%.

We compare the proposed active and adaptive algorithm
in Algorithm 1 with two other algorithms: the randomized
adaptive algorithm, and the passive adaptive algorithm. The
randomized adaptive algorithm is different from Algorithm 1
in that the active sampling distribution is constructed with a
random point in Θ instead of the estimate in the previous time-
step θ̂t−1. The passive adaptive algorithm uses a uniform sam-

pling distribution in place of the active sampling distribution.
All the reported results are averaged over 1000 runs of Monte
Carlo trials, and the number of time-steps considered is 25.
We set Kt = K∗t for all the algorithms and use the estimator
defined in Theorem 3 with window size W = 3 to estimate ρ.

Fig. 2(b) shows that ρ̂t converges to a conservative estimate
of ρ, and the corresponding sample size converges to K∗t = 26
after two time-steps. Fig. 2(a) and Fig. 2(c) show that the pro-
posed active and adaptive learning algorithm achieves a error
rate of 8% with these samples and significantly outperforms
the other algorithms.
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