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ABSTRACT

Model change detection is studied, in which there are two sets
of samples that are independently and identically distributed
(i.i.d.) according to a pre-change probabilistic model with pa-
rameter θ, and a post-change model with parameter θ′, respec-
tively. The goal is to detect whether the change in the model
is significant, i.e., whether the difference between the pre-
change parameter and the post-change parameter ‖θ − θ′‖2
is larger than a pre-determined threshold ρ. The problem is
considered in a Neyman-Pearson setting, where the goal is
to maximize the probability of detection under a false alarm
constraint. Since the generalized likelihood ratio test (GLRT)
is difficult to compute in this problem, we construct an empir-
ical difference test (EDT), which approximates the GLRT and
has low computational complexity. Moreover, we provide an
approximation method to set the threshold of the EDT to meet
the false alarm constraint. Experiments with linear regression
and logistic regression are conducted to validate the proposed
algorithms.

Index Terms— Model change detection, generalized
likelihood ratio test, Neyman-Pearson setting

1. INTRODUCTION

We study the model change detection problem, where two
sets of samples are independently and identically distribut-
ed (i.i.d.) according to a pre-change probabilistic model with
parameter θ, and a post-change probabilistic model with pa-
rameter θ′, respectively. The goal is to determine whether the
change in the model is significant or not. We formulate the
problem in a Neyman-Pearson setting, and adopt the `2 dis-
tance between the parameters to measure the change between
the models. More specifically, our goal is to construct a test
to detect whether ‖θ − θ′‖2 is larger than a pre-determined
threshold ρ, while satisfying a false alarm constraint.

This problem is motivated in part by the recent works on
active and adaptive sequential learning [1–3], where the ma-
chine learning models learned in previous time-steps are used
adaptively to improve the accuracy and data-efficiency in the
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next time-step. A key step in applying these adaptive sequen-
tial learning methods is the detection of an abrupt or large
model change, since adapting to the previous model if it is
significantly different from the current one could deteriorate
performance. A specific application in this context is the de-
tection of a shift of user preferences in personalized recom-
mendation systems [4, 5]. In addition, we believe that our
model change detection formulation can be applied in trans-
fer learning [6] to determine whether two machine learning
tasks are transferable.

We note that our model change detection problem is d-
ifferent from the quickest change detection problem studied
in [7, 8]. There a linear regression model changes at an un-
known point in time, and the goal is to detect the change as
soon as possible with streaming data. We are interested in de-
tecting whether the change in the model is significant, given
sets of samples from the pre- and post-change models.

A standard method for solving a composite hypothesis
testing problem such as the model change detection prob-
lem under consideration is the generalized likelihood ratio
test (GLRT). However, the maximum likelihood estimates of
θ and θ′ required in the GLRT are difficult to compute under
the constraint ‖θ − θ′‖2 ≤ ρ in this case. Our first contribu-
tion is to propose an empirical difference test (EDT), which
approximates the GLRT and has low computational complex-
ity. Moreover, we provide an approximation method to set
the threshold in the proposed EDT, which ensures a bound on
the worst-case false alarm probability. We validate our result-
s using experiments involving linear regression and logistic
regression.

2. PROBLEM MODEL

Throughout this paper, we use lower case letters to denote
scalars and vectors, and use upper case letters to denote ran-
dom variables and matrices. We use λmax(A) and λmin(A) to
denote the largest and the smallest eigenvalues of matrix A,
respectively, and Tr(A) to denote the trace of a square matrix
A. All logarithms are the natural ones.

We consider the model change detection problem in
the following setting. We are given two datasets S =
{z1, · · · , zn} and S ′ = {z′1, · · · , z′n′} with samples z drawn
from some instance space Z . In addition, we are given a pa-
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rameterized family of distribution modelsM = {p(z|θ), θ ∈
Rd}. We assume that there exist two unknown parameters
θ, θ′ ∈ Rd, such that the datasets S and S ′ are independently
generated from the following pre-change and post-change
models, respectively,

Zi ∼ p(zi|θ), zi ∈ S, and Z′j ∼ p(z′i|θ′), z′j ∈ S ′. (1)

Our goal is to construct a computational efficient test to
decide between the following two hypotheses:

H0 : (θ, θ′) ∈ χ0 , {(θ, θ′)| ‖θ − θ′‖2 ≤ ρ},
H1 : (θ, θ′) ∈ χ1 , {(θ, θ′)| ‖θ − θ′‖2 > ρ},

(2)

where ρ is a constant determined by the specific applications.
Let δ : Zn × Zn′ → {0, 1} denote the decision rule for

the model change detection problem. Then the probabilities
of false alarm and correct detection can be written as

PF(δ, θ, θ′) , P(θ,θ′){δ(S, S′) = 1}, ∀(θ, θ′) ∈ χ0, (3)

PD(δ, θ, θ′) , P(θ,θ′){δ(S, S′) = 1}, ∀(θ, θ′) ∈ χ1, (4)

where P(θ,θ′) denotes the probability measure for the data
conditioned on the model parameter (θ, θ′).

Note that in (2), both the null hypothesis and the alterna-
tive hypothesis are composite. We study the detection prob-
lem in the Neyman-Pearson setting:

max
δ

PD(δ, θ, θ′), ∀(θ, θ′) ∈ χ1

s.t. PF(δ, θ, θ′) ≤ α, ∀(θ, θ′) ∈ χ0.
(5)

As seen in (5), our goal is to construct a test that maximizes
the detection probability for all (θ, θ′) ∈ χ1, and satisfies the
false alarm constraint for all (θ, θ′) ∈ χ0. The solution to (5)
if it exists is said to be a uniformly most powerful (UMP) test.

Since zi and z′i are drawn i.i.d. from p(zi|θ) and p(z′i|θ′),
respectively, we can use

L(θ) , −
n∑
i=1

log p(zi|θ), L′(θ) , −
n′∑
i=1

log p(z′i|θ) (6)

to denote the negative log-likelihood functions with the pre-
change dataset S and post-change dataset S ′, respectively.
Then, the maximum likelihood estimates (MLE) of θ and θ′

can be written as

θ̂ML , argminL(θ), θ̂′ML , argminL′(θ). (7)

In addition, we denote the Hessian matrices of L(θ) and
L′(θ) as H(θ) , ∇2

θL(θ), and H ′(θ) , ∇2
θL
′(θ).

3. EMPIRICAL DIFFERENCE TEST

3.1. Generalized Likelihood Ratio Test

In general, a UMP solution to the composite hypothesis test-
ing problem in (5) may not exist, and may be difficult to find

even if it exists. An alternative approach is to apply the GLRT.
The generalized log-likelihood ratio (GLR) is given by

LG(S,S ′) , log
max(θ,θ′)∈χ1

∏n
i=1 p(zi|θ)

∏n′

i=1 p(z
′
i|θ′)

max(θ,θ′)∈χ0

∏n
i=1 p(zi|θ)

∏n′

i=1 p(z
′
i|θ′)

. (8)

If LG(S,S ′) does not have point masses under either H0

or H1, the GLRT has the following structure

δGL(S,S ′) =

{
1, if LG(S,S ′) ≥ τ
0, if LG(S,S ′) < τ,

(9)

where τ is the threshold for the GLR statistics determined by
the false alarm constraint α.

For the conciseness, we define

(θ̂1, θ̂
′
1) , argmin

(θ,θ′)∈χ1

L(θ) + L′(θ′),

(θ̂0, θ̂
′
0) , argmin

(θ,θ′)∈χ0

L(θ) + L′(θ′).
(10)

Then, the generalized log-likelihood ratio can be written as

LG(S,S ′) = L(θ̂0) + L′(θ̂′0)− L(θ̂1)− L′(θ̂′1). (11)

The main difficulty in applying GLRT is that the minimiz-
ers (θ̂1, θ̂

′
1) and (θ̂0, θ̂

′
0) in (10) are hard to compute. In the

following subsection, we propose an empirical difference test
which approximates the GLRT and has reduced the computa-
tional complexity.

3.2. Empirical Difference Test

We need the following conditions to proceed with our analysis
and establish the asymptotical normality of the MLEs [9].

Assumption 1 Regularity conditions for MLE

1. Smoothness: L(θ) and L′(θ) have first, second and
third derivatives for all θ.

2. Strong Convexity: For all θ, H(θ) and H ′(θ) are pos-
itive definite.

3. Boundedness: For all θ, the largest eigenvalues of
H(θ) and H ′(θ) are upper bounded by λM .

We note that the MLEs (θ̂ML, θ̂
′
ML) belong to either χ0 or

χ1. If (θ̂ML, θ̂
′
ML) ∈ χ1, i.e., (θ̂1, θ̂

′
1) = (θ̂ML, θ̂

′
ML), we have

LG(S,S ′) = L(θ̂0)− L(θ̂ML) + L′(θ̂′0)− L′(θ̂′ML) > 0.
In addition, the worst-case false alarm probability of

GLRT is given by max(θ,θ′∈χ0) P(θ,θ′){LG(S,S ′) ≥ τ},
which we wish to upper bounded byα. Note thatLG(S,S ′) >
0 when (θ̂ML, θ̂

′
ML) ∈ χ1 holds. In the following, we focus on

the case where α < max(θ,θ′∈χ0) P(θ,θ′){LG(S,S ′) ≥ 0},
i.e., a relatively small false alarm constraint α. Thus, we
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just need to study the false alarm probability of GLRT when
(θ̂ML, θ̂

′
ML) ∈ χ1 and τ > 0.

Given (θ̂ML, θ̂
′
ML) ∈ χ1, it is difficult to solve for (θ̂0, θ̂

′
0)

in (10) exactly. However, we can construct an upper bound for
the GLR by approximating (θ̂0, θ̂

′
0) using a linear combina-

tion of (θ̂ML, θ̂
′
ML). Let ∆θ̂ , θ̂′ML− θ̂ML. Then ‖∆θ̂‖2 > ρ,

θ̃0 = θ̂ML +
µ∆θ̂

‖∆θ̂‖2
, θ̃′0 = θ̂ML +

(µ+ ρ)∆θ̂

‖∆θ̂‖2
, (12)

where µ ∈ [0, ‖∆θ̂‖2 − ρ] denotes the distance between θ̃0

and θ̂ML. It can be verified that (θ̃0, θ̃
′
0) ∈ χ0. Then, the GLR

in (11) can be upper bounded as

LG(S,S ′) = L(θ̂0) + L′(θ̂′0)− L(θ̂1)− L(θ̂′1)

≤ L(θ̃0) + L′(θ̃′0)− L(θ̂1)− L(θ̂′1)

(a)
=

1

2
(θ̂1 − θ̃0)>H(θ̃)(θ̂1 − θ̃0) +

1

2
(θ̂′1 − θ̃′0)>H ′(θ̃′)(θ̂′1 − θ̃′0)

=
µ2

2

∆θ̂>

‖∆θ̂‖2
H(θ̃)

∆θ̂

‖∆θ̂‖2

+
(‖∆θ̂‖2 − (µ+ ρ))2

2

∆θ̂>

‖∆θ̂‖2
H ′(θ̃′)

∆θ̂

‖∆θ̂‖2
(13)

(b)

≤ µ2

2σ2
λmax(H(θ̃)) +

(‖∆θ̂‖2 − (µ+ ρ))2

2σ2
λmax(H ′(θ̃′)),

where (a) follows from the Taylor’s Theorem, θ̃ and θ̃′ de-
note the parameters in the corresponding remainders; and (b)
follows from the fact that H(θ̃) and H ′(θ̃′) are positive def-
inite and ∆θ̂>

‖∆θ̂‖2
is a unit vector. Note that λmax(H(θ̃)) and

λmax(H ′(θ̃′)) are bounded by λM in Assumption 1. Hence,

PF(δGL) = P(θ,θ′){LG(S,S ′) ≥ τ}

≤ P(θ,θ′)

{ µ2

2σ2
λM +

(‖∆θ̂‖2 − (µ+ ρ))2

2σ2
λM ≥ τ

}
= P(θ,θ′)

{
‖∆θ̂‖2 ≥ η

}
, (14)

for (θ, θ′) ∈ χ0. The false alarm probability of GLRT can
be upper bounded by the probability that the empirical differ-
ence ‖∆θ̂‖2 is larger than another threshold η. Note that the
threshold η can be set by letting P(θ,θ′)

{
‖∆θ̂‖2 ≥ η

}
≤ α

for all (θ, θ′) ∈ χ0, which is independent of the unknown
quantities µ and λM .

Thus, we propose the following empirical difference test
with the following structure to approximate the GLRT,

δED =

{
1, if ‖∆θ̂‖2 ≥ η
0, if ‖∆θ̂‖2 < η.

(15)

The benefits for using δED are two-fold: 1) Instead of con-
structing the more complicated GLR statistics, our EDT only
requires the computation of the empirical difference ∆θ̂ be-
tween the MLEs, which is more tractable in practice. 2) The
distribution of the empirical difference ∆θ̂ is asymptotically
Gaussian, which facilitates the setting of the threshold η to
meet the false alarm constraint α.

4. APPROXIMATION FOR SETTING TEST
THRESHOLD

In this subsection, we provide a method based on a χ2 ap-
proximation [10] to set the threshold η in the EDT.

Since θ̂ML and θ̂′ML are the MLEs of θ and θ′ with n and
n′ samples, respectively, we have
√
n(θ̂ML−θ)

d.−→ N (0, I−1
θ ),

√
n′(θ̂′ML−θ′)

d.−→ N (0, I−1
θ′ ),

from the asymptotical normality of MLE [9], where Iθ de-
notes the Fisher information matrix of the probabilistic mod-
el p(z|θ). Thus, we can approximate the distribution of ∆θ̂
using a Gaussian distribution N (θ′ − θ,Σ∆θ), where Σ∆θ ,
I−1
θ

n +
I−1

θ′
n′ . In practice, Iθ and Iθ′ can be estimated by re-

placing θ and θ′ with the corresponding MLEs θ̂ML and θ̂′ML,
respectively.

To satisfy the false alarm constraint in (5), we need to set
the threshold ηα based on the following equation in the EDT,

max
θ,θ′∈χ0

P(θ,θ′){‖∆θ̂‖2 ≥ η2
α} = α. (16)

The following theorem characterizes the distribution of
‖∆θ̂‖2 that results from the Gaussian approximation.

Theorem 1 Suppose ∆θ ∼ N (θ′ − θ,Σ∆θ), and the co-
variance matrix Σ∆θ has the eigen-decomposition Σ∆θ =
P>ΛP , where Λ = diag(λ1, · · · , λd) contains all the eigen-
values, and P is an orthogonal matrix. Then,

‖∆θ‖2 d.
=

d∑
i=1

λi(Ui + bi)
2, (17)

where Ui ∼ N (0, 1), and b = (
√

Λ)−1(θ′ − θ).

The distribution of ‖∆θ‖2 is a linear combination of in-
dependent non-central chi-squared random variables with de-
gree of freedom of one, which does not have a simple closed
form [11]. We therefore propose the following approximation
method to set the threshold in the EDT. Note that

P(θ,θ′)

{ d∑
i=1

λi(Ui + bi)
2 ≥ η2

}
≤ P(θ,θ′)

{ d∑
i=1

(Ui + bi)
2 ≥ η2/λmax(Σ∆θ)

}
, (18)

for (θ, θ′) ∈ χ0, and
∑d
i=1(Ui + bi)

2 is a non-central
chi-squared χ2(k, γ) random variable with degrees of free-
dom k = d, and non-centrality parameter γ =

∑d
i=1 b

2
i ≤

ρ2/λmin(Σ∆θ), where the inequality follows from the fact
‖θ′ − θ‖2 ≤ ρ under H0. Thus,

max
θ,θ′∈χ0

P(θ,θ′){‖∆θ‖22 ≥ η2}

≤ max
θ,θ′∈χ0

P
{
χ2(d,

d∑
i=1

b2i ) ≥ η2/λmax(Σ∆θ)
}
. (19)
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We can set the threshold η̃α with the χ2 approximation [10]
using the following equation,

P
{
χ2(d, ρ2/λmin(Σ∆θ)) ≥ η̃2

α/λmax(Σ∆θ)
}

= α (20)

to ensure that the false alarm probability is bounded by α.

5. NUMERICAL RESULTS

In this section, we evaluate the performance of the proposed
empirical difference test δED in linear regression and logistic
regression models.
Linear regression model: The datasets S and S ′ are gener-
ated from the linear model y = Xθ + ξ, where X ∈ Rn×d
denotes the input variable, y ∈ Rn denotes the response vari-
able and θ ∈ Rd denotes the weight vector. We assume that
all the elements in noises ξ ∈ Rn are i.i.d. zero mean Gaus-
sian random variables generated from N (0, σ2). Then, the
Fisher information matrix Iθ = XX>/σ2 is independent of
θ. In the simulations, we set the dimension d = 10, the num-
ber of samples n = n′ = 40, σ2 = 1 and ρ = 1.
Logistic regression model: The datasets S and S ′ are gener-
ated from the following logistic model

p(yi|xi, θ) =
1

1 + exp(−yix>i θ)
, ∀(xi, yi) ∈ S, (21)

where xi ∈ Rd denotes the feature vector, yi ∈ {±1} denotes
the label, and θ ∈ Rd, ‖θ‖2 = 1 is the normalized model
parameter vector. Then, the Fisher information matrix

Iθ = Ex

[ 1

1 + exp(x>i θ)

1

1 + exp(−x>i θ)
xix
>
i

]
. (22)

In the simulations, we choose dimension d = 5, the num-
ber of samples n = n′ = 60, and set ρ such that the angle
between θ and θ′ is π

4 .
To illustrate the performance of the proposed algorithm-

s, we plot the probability P(θ,θ′){δ = 1} as a function of
‖θ − θ′‖2 in all three figures, where the normalized mod-
el change ‖θ − θ′‖/ρ ranges from 0 to 2. Note that when
‖θ − θ′‖2 < ρ, i.e., (θ, θ′) ∈ χ0, P(θ,θ′){δ = 1} denotes
the false alarm probability PF(δ) (in the left side of the fig-
ures). In contrast, when ‖θ − θ′‖2 > ρ, (θ, θ′) ∈ χ1 and
P(θ,θ′){δ = 1} denotes the detection probability PD(δ) (in
the right side of the figures). Thus, the plot of P(θ,θ′){δ = 1}
provides us with an illustration of the test performance under
both hypotheses with different model parameters.

To verify the approximation of the GLRT with the pro-
posed EDT, we first compare the performance of these tests
for the linear regression model (the GLRT is not computa-
tionally feasible for logistic regression) for two values of the
false alarm constraint α = 0.1 and α = 0.3. The thresholds
of these tests ηα are set using 1000 runs of Monte-Carlo sim-
ulations such that the false alarm probabilities are equal to α
as in (16). It is shown in Fig. 1 that the difference between

Fig. 1. Comparison of the performances of the GLRT and EDT
for the linear regression model.

Fig. 2. Comparison of the performance of EDT with the thresh-
old ηα and the χ2 approximation η̃α, for the linear regression
model with α = 0.1.

Fig. 3. Comparison of the performance of EDT with the thresh-
old ηα and the χ2 approximation η̃α, for the logistic regression
model with α = 0.1.

the performance of EDT and that of GLRT is negligible with
only n = n′ = 40 samples, which justifies the use of EDT.
We note that when ‖θ − θ′‖/ρ = 1, it is impossible to distin-
guish H0 and H1 even if the number of samples n and n′ go
to infinity, i.e., the probabilities of false alarm and detection
are both equal to α in this case.

Fig. 2 and Fig. 3 compare the performance of EDT with
the threshold ηα computed by 1000 runs of Monte-Carlo sim-
ulations in (16), and the threshold η̃α set by the proposed χ2

approximation in (20), respectively, when α = 0.1. It can be
observed that in both linear regression and logistic regression
cases, the non-central chi-squared approximation in (20) pro-
vides conservative estimates of the test thresholds η, thereby
ensuring that the false alarm constraint is met.
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