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Abstract—The problem of estimating the KL divergence be-
tween two unknown distributions is studied. The alphabet size
k of the distributions can scale to infinity. The estimation is
based on m and n independent samples respectively drawn from
the two distributions. It is first shown that there does not exist
any consistent estimator to guarantee asymptotic small worst-
case quadratic risk over the set of all pairs of distributions. A
restricted set that contains pairs of distributions with bounded
ratio f(k) is further considered. An augmented plug-in esti-
mator is proposed, and is shown to be consistent if and only
if m = ω(k ∨ log2(f(k)) and n = ω(kf(k)). Furthermore,
if f(k) ≥ log2 k and log2(f(k)) = o(k), it is shown that
any consistent estimator must satisfy the necessary conditions:
m = ω( k

log k
∨ log2(f(k)) and n = ω( kf(k)

log k
).

I. INTRODUCTION

Consider estimation of Kullback-Leibler (KL) divergence
between the probability distributions P and Q defined as

D(P‖Q) =
k∑
i=1

Pi log
Pi
Qi
,

where P and Q are over a common alphabet set [k] ,
{1, . . . , k}, and P is absolutely continuous with respect to
Q, i.e., if Qi = 0, Pi = 0, for 1 ≤ i ≤ k. We use Mk to
denote the collection of all such pairs of distributions.

Suppose P and Q are unknown. Instead, m independent
and identically distributed (i.i.d.) samples X1, . . . , Xm

drawn from P and n i.i.d. samples Y1, . . . , Yn drawn
from Q are available for estimation. The sufficient statistics
for estimating D(P‖Q) are the histograms of the samples
M , (M1, . . . ,Mk) and N , (N1, . . . , Nk), where

Mj =

m∑
i=1

1{Xi=j} and Nj =

n∑
i=1

1{Yi=j}

record the numbers of occurrences of j ∈ [k] in samples drawn
from P and Q, respectively. Then M ∼ Multinomial(m,P )
and N ∼ Multinomial(n,Q). An estimator D̂ of D(P‖Q)
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with n: f(n) = O(g(n)) represents that there exist k, n0 > 0 s.t. for all
n > n0, |f(n)| ≤ k|g(n)|; f(n) = Ω(g(n)) represents that there exist
c, n0 > 0 s.t. for all n > n0, f(n) ≥ cg(n); f(n) = Θ(g(n)) represents
that there exist c1, c2, n0 > 0 s.t. for all n > n0, c1g(n) ≤ f(n) ≤ c2g(n);
f(n) = ω(g(n)) represents that for all c > 0, there exists n0 > 0 s.t. for
all n > n0, |f(n)| ≥ c|g(n)|; and f(n) = o(g(n)) represents that for all
c > 0, there exists n0 > 0 s.t. for all n > n0, |f(n)| ≤ cg(n).

is then a function of the histograms M and N , denoted by
D̂(M,N).

We adopt the following worst-case quadratic risk to measure
the performance of estimators of the KL divergence:

R(D̂, k,m, n) , sup
P,Q∈Mk

E[(D̂(M,N)−D(P‖Q))2]. (1)

In this paper, we are interested in the large-alphabet regime
with k →∞. In general, the number m and n of samples are
functions of k, which can scale with k to infinity.

Definition 1. A sequence of estimators D̂ is said to be
consistent under sample complexity m(k) and n(k) if

lim
k→∞

R(D̂, k,m, n) = 0.

We further define the minimax quadratic risk as:

R∗(k,m, n) , inf
D̂
R(D̂, k,m, n). (2)

We are also interested in the following set

Mk,f(k) =

{
(P,Q) : |P | = |Q| = k,

Pi

Qi
≤ f(k), ∀ 1 ≤ i ≤ k

}
,

(3)
which contains distributions (P,Q) with bounded ratio. We

define the worst-case quadratic risk over Mk,f(k) as

R(D̂,k,m, n, f(k))

, sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N)−D(P‖Q))2], (4)

and define the corresponding minimax quadratic risk as

R∗(k,m, n, f(k)) , inf
D̂
R(D̂, k,m, n, f(k)). (5)

A. Comparison to Related Problems

Several estimators of KL divergence when P and Q are
continuous have been proposed and shown to be consistent.
The estimator proposed in [1] is based on data-dependent
partition for density estimation, the estimator proposed in [2] is
based on a k-nearest neighbor approach for density estimation,
and the estimator developed in [3] utilizes a kernel-based
approach for estimating the density ratio. A more general
problem of estimating the f -divergence was studied in [4],
where an estimator based on a weighted ensemble of plug-in
estimators was proposed to trade bias with variance. All these
approaches exploit the smoothness of continuous densities or
density ratios, which guarantees that samples falling into a
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certain neighborhood area can be used to estimate the local
density or density ratio accurately. However, such a smooth-
ness property does not hold for discrete distributions, whose
probabilities over adjacent point masses can vary significantly.
In fact, [1] provides an example to show that estimation of KL
divergence can be difficult even for continuous distributions if
the density has sharp dips.

Estimation of KL divergence when the distributions P and
Q are discrete has been studied in [5] for the regime with fixed
alphabet cardinality k and large sample sizes m and n. Such
a regime is very different from the large-alphabet regime in
which we are interested, with k scaling to infinity. Clearly, as
k increases, the scaling of the sample sizes m and n must be
fast enough with respect to k in order to guarantee consistent
estimation.

In the large-alphabet regime, KL divergence estimation is
closely related to the entropy estimation with a large alphabet
recently studied in [6]–[8]. Compared to entropy estimation,
KL divergence estimation has one more dimension of uncer-
tainty, that about the distribution Q. Some distributions Q can
contain very small point masses that contribute significantly to
the value of divergence, but are difficult to estimate because
samples of these point masses occur rarely. In fact, such dis-
tributions dominate the risk in (1), and make the construction
of consistent estimators challenging.

B. Our Contributions

Our contributions contain the following three results.
We first show, using Le Cam’s two-point method [9], that

there is no consistent estimator of KL divergence over the
distribution set Mk. As described above, this is due to the
fact that the set Mk contains distributions Q, which have
arbitrarily small components that contribute significantly to
KL divergence but require arbitrarily large number of samples
to estimate accurately.

Thus, we further focus on the set Mk,f(k) given in (3)
that contains distributions (P,Q) with their ratio bounded by
f(k). We construct an augmented plug-in estimator and show
that such an estimator is consistent over Mk,f(k) if and only
if m = ω(k ∨ log2(f(k)) and n = ω(kf(k)). Our proof of
the sufficient conditions is based on evaluating the bias and
variance separately. Our proof of the necessary condition m =
ω(log2(f(k)) is based on Le Cam’s two-point method with a
judiciously chosen pair of distributions. And our proof of the
necessary conditions m = ω(k) and n = ω(kf(k)) is based on
analyzing the bias of the estimator and constructing different
pairs of “worst case” distributions for the cases when either the
bias caused by insufficient samples from P or the bias caused
by insufficient samples from Q dominates, respectively.

We further show that if f(k) ≥ log2 k and log2(f(k)) =
o(k), any consistent estimator of KL divergence overMk,f(k)

must satisfy m = ω( k
log k ∨ log2(f(k)) and n = ω(kf(k)log k ). Our

proof is based on an extension of Le Cam’s two-point method
to composite hypotheses. Comparing to entropy estimation
problem [7], the challenge here that requires special technical

treatment is to construct prior distributions for (P,Q) that
satisfy the bounded ratio constraint.

II. MAIN RESULTS

In this section, we first show that there does not exist any
consistent estimator of KL divergence over the set Mk. We
then focus on the set Mk,f(k), and study the consistency of
an augmented plug-in estimator, and characterize necessary
conditions on the sample complexity for any consistent esti-
mator. Due to space limitations, we provide only outlines of
our proofs, with detailed proofs available in [10].

A. No Consistent Estimator over Mk

In the following theorem, we show that the minimax risk
over the set Mk is unbounded for arbitrary alphabet size k
and m and n samples.

Theorem 1. For any m,n ∈ N, and k ≥ 2, R∗(k,m, n) is
infinite. Therefore, there does not exist any consistent estimator
of KL divergence over the set Mk.

Outline of Proof: Theorem 1 follows from Le Cam’s
two-point method [9]: If two pairs of distributions (P1, Q1)
and (P2, Q2) are sufficiently close such that it is impossible
to reliably distinguish between them using m samples from
P and n samples from Q with error probability less than
some constant, then any estimator suffers a quadratic risk
proportional to the difference between the divergence values
|D(P1‖Q1) − D(P2‖Q2)|2. The details of the proof can be
found in [10].

We next give an example for binary distributions, i.e.,
k = 2, to illustrate how distributions in the above proof can
be constructed. We let P1 = P2 = ( 1

2 ,
1
2 ), Q1 = (e−l, 1−e−l)

and Q2 = ( 1
2l , 1 −

1
2l ), where l > 0. For any n ∈ N, choose

l sufficiently large such that D(Q1‖Q2) < 1
n . Thus, the error

probability of distinguishing Q1 and Q2 with n samples is
greater than a constant. However, D(P1‖Q1) = Θ(l) and
D(P2‖Q2) = Θ(log l). Hence, the minimax risk, which is
lower bounded by the difference of the above divergences,
can be made arbitrarily large by letting l→∞.

B. Augmented Plug-in Estimator over Mk,f(k)

As we have shown in Section II-A, there does not exist
any consistent estimator of KL divergence over the set Mk.
In this subsection, we study the risk of an estimator over the
set Mk,f(k), and characterize under what sample complexity
such an estimator is consistent.

In order to estimate the KL divergence between a pair
of distributions, a natural idea is the “plug-in” approach,
namely, first estimate the distributions and then substitute
these estimates into the divergence function. This leads to the
following plug-in estimator, i.e., the empirical divergence

D̂plug−in(M,N) = D(P̂‖Q̂), (6)

where P̂ = (P̂1, . . . , P̂k) and Q̂ = (Q̂1, . . . , Q̂k) denote
the empirical distributions with P̂i = Mi

m and Q̂i = Ni

n ,
respectively.
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Unlike the entropy estimation problem, where the plug-in
estimator Ĥplug−in is asymptotically efficient in the “fixed P
large n” regime, the direct plug-in estimator D̂plug−in in (6)
of KL divergence has an infinite bias. This is because, with
non-zero probability, Nj = 0 and Mj 6= 0 for some j ∈ [k],
leading to infinite D̂A−plug−in.

We can get around the above issue associated with the direct
plug-in estimator, if we add one more sample to each mass
point of Q, and take Q̂′i = Ni+1

n as an estimate of Qi so that
Q̂′i is non-zero for all i. We therefore propose the following
“augmented plug-in” estimator based on Q̂′i

D̂A−plug−in(M,N) =
k∑
i=1

Mi

m
log

Mi/m

(Ni + 1)/n
. (7)

Remark 1. For technical convenience, Q̂′i is not normalized
after adding samples. It can be shown that normalization does
not provide order-level smaller risk for the plug-in estimator.

Remark 2. The add-constant estimator [11] of Q, which adds
a fraction sample to each mass point of Q, can also be used
as an estimator of divergence. Though intuitively such an
estimator should not provide order-level improvement in the
risk, the analysis of the risk appears to be difficult.

We next characterize sufficient and necessary condi-
tions on the sample complexity to guarantee consisten-
cy of the augmented plug-in estimator over Mk,f(k). To
this end, We first provide upper and lower bounds on
R(D̂A−plug−in, k,m, n, f(k)) respectively.

Proposition 1. For all k,m, n ∈ N
R(D̂A−plug−in, k,m, n, f(k))

= O
((

kf(k)

n
+ log(1 +

k − 1

m
)

)2

+
log2(kf(k))

m
+

f(k)

n
+

kf(k)

mn

)
.

Therefore, if m = ω(k ∨ log2 f(k)) and n = ω(kf(k)),
R(D̂A−plug−in, k,m, n, f(k))→ 0 as k goes to infinity.

Outline of Proof: The proof consists of separately bound-
ing the bias and variance of the augmented plug-in estimator.
The details can be found in [10].

Proposition 2. If m = O(k ∨ log2 f(k)), or n = O(kf(k)),
then for sufficiently large k

R(D̂A−plug−in, k,m, n, f(k)) ≥ c′ (8)

where c′ is a positive constant.

Outline of Proof: It can be shown that the bias of the
augmented plug-in estimator is upper and lower bounded as
follows:

(
k

m
∧ 1)− kf(k)

n
(9a)

≤ sup
(P,Q)∈Mk,f(k)

E[D̂A−plug−in(m,n)−D(P‖Q)]

≤ log

(
1 +

k

m

)
− k − 1

k
exp(− 2n

kf(k)
). (9b)

1) If m = O(k) and n = ω(kf(k)), the lower bound in (9a)
converges to 1. Hence, the bias as well as the risk is lower
bounded by a positive constant.

2) If m = ω(k) and n = O(kf(k)), the upper bound in (9b)
converges to a negative constant. This implies that the risk
is lower bounded by a positive constant.

3) If m = O(k) and n = O(kf(k)), the lower bound (9a)
converges to −∞ and the upper bound (9b) converges to
+∞, which does not provide useful information. Hence,
we design another approach for this case as follows.

We now focus on the third case above. We choose P to be
the uniform distribution. The bias of the augmented plug-in
estimator can be decomposed into: 1) bias due to estimating∑k
i=1 Pi logPi; and 2) bias due to estimating

∑k
i=1 Pi logQi.

It can be shown that the first bias is always positive, because
the uniform distribution achieves the largest entropy for a
given alphabet size k. The second bias is always negative for
any distribution Q. Hence, the two bias terms may cancel out
partially or even fully. Thus, to show the risk is bounded away
from zero, the idea is to first determine which bias dominates,
and then to construct a pair of distributions accordingly such
that the dominant bias is either lower bounded by a positive
constant or upper bounded by a negative constant.

If k
m ≥ (1 + ε)αkf(k)n , where ε > 0 and 0 < α < 1

are constants, and which implies that the number of samples
drawn from P is relatively smaller than the number of samples
drawn from Q, the first bias dominates. We construct (P,Q):
P is uniform and Q =

(
1

αkf(k) , · · · ,
1

αkf(k) , 1− k−1
αkf(k)

)
.

It can be shown that for the above (P,Q), the bias (and hence
the risk) is lower bounded by a positive constant log(1 + ε).

If k
m < (1 + ε)αkf(k)n , which implies that the number of

samples drawn from P is relatively larger than the number
of samples drawn from Q, the second bias dominates. We
construct the following distributions (P,Q): P is uniform and
Q =

(
1

kf(k) , · · · ,
1

kf(k) , 1− k−1
kf(k)

)
. It can be shown that

for the above (P,Q), the bias is upper bounded by a negative
constant. Hence, the risk is lower bounded by a positive
constant.
4) If m = O(log2 f(k)), we construct two pairs of distribu-

tions as follows:

P1 =

(
1

2(k − 1)
, · · · , 1

2(k − 1)
,
2

3

)
,

P2 =

(
1 + ε′

2(k − 1)
, · · · , 1 + ε′

2(k − 1)
,
2− ε′

3

)
,

Q1 = Q2 =

(
1

3(k − 1)f(k)
, · · · , 1

3(k − 1)f(k)
, 1− 1

3f(k)

)
.

By Le Cam’s two-point method [9], it can be shown that if
m = O(log2 f(k)), no estimator can be consistent, which
implies that the augmented plug-in estimator is not consistent.

Combining Propositions 1 and 2, we have the following the-
orem on the consistency of the augmented plug-in estimator.

Theorem 2. The augmented plug-in estimator of KL diver-
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gence is consistent over the set Mk,f(k) if and only if

m = ω(k ∨ log2(f(k)) and n = ω(kf(k)). (10)

C. Minimax Lower Bound over Mk,f(k)

In this subsection, we characterize necessary conditions on
the sample complexity that all consistent estimators of KL
divergence over Mk,f(k) must satisfy. The general idea is to
apply generalized Le Cam’s two-point method [9] to develop
a lower bound on the minimax risk.

1) Poisson sampling: We first utilize the Poisson sampling
technique to handle the dependency of the multinomial distri-
bution, as is done in [7] for entropy estimation. We relax the
deterministic sample sizes m and n to Poisson random vari-
ables m′ ∼ Poi(m) with mean m and n′ ∼ Poi(n) with mean
n, respectively. Under this model, we draw m′ and n′ i.i.d.
samples from P and Q, respectively. The sufficient statistics
Mi ∼ Poi(nPi) and Ni ∼ Poi(nQi) are independent, which
significantly simplifies the analysis.

Analogous to the minimax risk (5), we define its counterpart
under the Poisson sampling model as

R̃∗(k,m, n, f(k)) , inf
D̂

sup
(P,Q)∈Mk,f(k)

E[(D̂(M,N)−D(P‖Q))2]

where the expectation is taken over Mi ∼ Poi(nPi) and
Ni ∼ Poi(nQi) for i = 1, . . . , k. Since the Poissonized
sample sizes are concentrated near their means m and n with
high probability, the minimax risk under Poisson sampling is
close to that with fixed sample sizes as stated in the following
lemma.

Lemma 1. There exists a constant c > 1
4 such that

R̃∗(k, 2m, 2n, f(k))− e−cm log f(k)− e−cn log f(k)

≤ R∗(k,m, n, f(k)) ≤ 4R̃∗(k,m/2, n/2, f(k)). (11)

All the results that we prove in this subsection are under
the Poisson sampling assumption.

2) Minimax lower bound: We lower bound the minimax
risk by the minimax risk with P or Q being known and
carefully chosen to tighten the bound. In both cases, we choose
the known P or Q to be the uniform distribution. Such a choice
yields the following two propositions.

Proposition 3. For all k,m, n ∈ N and f(k) ≥ log2 k,

R̃∗(k,m, n, f(k)) ≥ R̃∗(k,m,Q, f(k)) = Θ

(
k

m log k

)2

,

where

R̃∗(k,m,Q, f(k)) , inf
D̂

sup
P,Q∈Mk,f(k)

E[(D̂(M,Q)−D(P‖Q))2]

is the minimax risk under Poisson sampling with Q being
known.

Outline of Proof: Setting Q = Q0 to be uniform
distribution on [k], D(P‖Q0) =

∑k
i=1 Pi logPi + log k =

H(P ) + log k, and the problem reduces to entropy estimation
under the minimax risk with (P,Q0) satisfying the bounded
ratio constraint. If f(k) ≥ log2 k, following steps similar to

those in [7], it can be shown that R∗(k,m,Q, f(k)) is lower

bounded by
(

k
m log k

)2
at the order level.

Proposition 4. If f(k) ≥ log2 k, log2(f(k)) = o(k) and n =

O(kf(k)log k ), then for sufficiently large k

R̃∗(k,m, n, f(k)) ≥ R̃∗(k, P, n, f(k)) ≥ c

where c is a positive constant, and

R̃∗(k, P, n, f(k)) , inf
D̂

sup
P,Q∈Mk,f(k)

E[(D̂(P,N)−D(P‖Q))2]

is the minimax risk under Poisson sampling with P being
known.

Outline of Proof: The proof applies the generalized Le
Cam’s method [9] that involves the two composite hypotheses
to lower bound the minimax risk and adapts techniques for
entropy estimation in [7]. The new challenge here arises due to
the bounded ratio constraint on (P,Q), which requires special
technical treatments to construct prior distributions, as well as
bounding various divergence related quantities.

Let P = P0 be uniform distribution. Then the minimax risk
can be bounded as

R̃∗(k, P, n, f(k))

≥ inf
D̂

sup
P0,Q∈Mk,f(k)

E[(D̂(P0, N)−D(P0‖Q))2].

To use the generalized Le Cam’s method [9], consider the
following two composite hypotheses:

H0 : D(P0‖Q) ≤ t versus H1 : D(P0‖Q) ≥ t+ d. (12)

If the optimal test cannot distinguish the two hypotheses
in (12) reliably, then the quadratic risk is lower bounded
by Θ(d2). Furthermore, the optimal probability of error for
composite hypotheses testing is given by the Bayesian risk
with respect to the least favorable prior.

In the following we construct tractable prior distributions.
Let V and V ′ be two R+ valued random variables defined on
the interval [η, λ] and have equal mean E(V ) = E(V ′) = α.
We construct two random vectors Q = 1

k (V1, . . . .Vk−1, k −
(k− 1)α) and Q′ = 1

k (V ′1 , . . . .V
′
k−1, k− (k− 1)α) consisting

of k − 1 i.i.d. copies of V and V ′ and a deterministic
term 1 − (k−1)α

k , respectively. Since we choose P = P0

to be uniform distribution, and (P,Q) satisfy the bounded
ratio constraint, Qi must be greater than 1

kf(k) . This yields
a different construction from [7]. Note that V, V ′ ∈ [η, λ]. To
satisfy the bounded ratio constraint, we assume that η ≥ 1

f(k) .
Due to the law of large numbers, the vectors Q and Q′

are approximately probability distributions. Furthermore, the
elements in Q and Q′ are independent, which significantly
simplifies the analysis.

Next we outline the main ingredients in Le Cam’s method
with priors Q and Q′. Note that D(P0‖Q) converges to its
expectation E[D(P0‖Q)] as k goes to infinity. Then with high
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probability, D(P0‖Q) and D(P0‖Q′) are separated by the
difference of their means

d = E[D(P0‖Q)]− E[D(P0‖Q′)] = E[log V ′]− E[log V ].

Since Q is drawn from the prior distribution Q, the sufficient
statistics N = (N1, . . . , Nk) are i.i.d. distributed according to
the Poisson mixture E[Poi(nkV )]. To establish the impossibil-
ity of hypothesis testing (12), the total variation between the
two k-product distributions should satisfy

TV(E[Poi(nV/k)],E[Poi(nV ′/k)]) ≤ c/k. (13)

In fact, the i.i.d. construction of Q and Q′ fully exploits
independence imposed by Poisson sampling, and reduces the
problem to one dimension. What remains is to choose V and
V ′ to maximize E[log V ′]−E[log V ], subject to the constraint
(13). A commonly used proxy for bounding the total variation
is obtained via moment matching, i.e., by solving the following
optimization problem with moment matching constraints

EL(η, λ) ,maxE[log V ′]− E[log V ]

s.t. E[V j ] = E[V ′j ], j = 1, . . . , L,

V, V ′ ∈ [η, λ],

for some appropriately chosen L ∈ N, η ≥ 1
f(k) and λ

depending on n and k.
As shown in [7], we have

EL(η, λ) = 2EL(log, [η/λ, 1]) (14)

where EL(g, I) is the best uniform approximation error of
a function g over a finite interval I by polynomials of
degree L. Due to the singularity of the logarithm at zero, the
approximation error can be made bounded away from zero
if η/λ grows quadratically with the degree L−1. Choosing
η = 1

f(k) , λ = c1
log2 k
f(k) , c1 ≤ 1, L = log k and together with

the condition log2(f(k)) = o(k), the minimax risk can be
shown to be lower bounded away from zero if n = O(kf(k)log k ).

Combining Propositions 3, 4 and the necessary condition
m = ω(log2 f(k)) from Le Cam’s two-point method (case (4)
in the proof of Proposition 2), we obtain the following theorem
on the necessary conditions for an estimator to be consistent.

Theorem 3. If log2(f(k)) = o(k) and f(k) ≥ log2 k, then
any consistent estimator of KL divergence over Mk,f(k) must
satisfy

m = ω(
k

log k
∨ log2 f(k)) and n = ω(

kf(k)

log k
). (15)

Comparing Theorem 3 with Theorem 2 that characterizes
the sample complexity for consistent augmented plug-in esti-
mator, there is a gap of the order log k. A promising approach
to fill in this gap is to incorporate polynomial approximation
into estimator construction to trade bias with variance as in
entropy estimation. However, such an approach can be difficult
to develop for KL divergence (as a function of two distribu-
tions) due to the fact that the best polynomial approximation
to multi-variable functions is not well understood yet.

We also note that our proof of Proposition 4 may be
strengthened by designing a jointly distributed prior on (P,Q),
instead of treating them separately. This may help to relax or
remove the conditions log2(f(k)) = o(k) and f(k) ≥ log2 k
in Proposition 3 and 4 and Theorem 3.

III. CONCLUSION

We have shown that there exists no consistent estimator
for KL divergence under the worst-case quadratic risk over
the set of all pairs of distributions, and therefore focused on
the set of pairs of distributions with bounded ratio. We have
proposed an augmented plug-in estimator, and characterized
tight sufficient and necessary conditions for such an estimator
to be consistent. We have also developed necessary conditions
on the sample complexity for any consistent estimator, which
is within a log k factor from the that of augmented plug-
in estimator. In future work, we hope to find an improved
estimator that has sample complexity that approaches our
lower bound.
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