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Abstract—A mutual information based upper bound on the
generalization error of a supervised learning algorithm is derived
in this paper. The bound is constructed in terms of the mutual
information between each individual training sample and the out-
put of the learning algorithm, which requires weaker conditions
on the loss function, but provides a tighter characterization of the
generalization error than existing studies. Examples are further
provided to demonstrate that the bound derived in this paper is
tighter, and has a broader range of applicability. Application to
noisy and iterative algorithms, e.g., stochastic gradient Langevin
dynamics (SGLD), is also studied, where the constructed bound
provides a tighter characterization of the generalization error
than existing results.

I. INTRODUCTION

Consider an instance space Z , a continuous hypothesis
spaceW , and a nonnegative loss function ` :W×Z → R+. A
training dataset S = {Z1, · · · , Zn} consists of n i.i.d samples
Zi ∈ Z drawn from an unknown distribution µ. The goal of a
supervised learning algorithm is to find an output hypothesis
w ∈ W that minimizes the population risk:

Lµ(w) , EZ∼µ[`(w,Z)]. (1)

In practice, µ is unknown, and thus Lµ(w) cannot be computed
directly. Instead, the empirical risk of w on a training dataset
S is studied, which is defined as

LS(w) ,
1

n

n∑
i=1

`(w,Zi). (2)

A learning algorithm can be characterized by a randomized
mapping from the training data set S to a hypothesis W
according to a conditional distribution PW |S . The generaliza-
tion error of a supervised learning algorithm is the expected
difference between the population risk of the output hypothesis
and its empirical risk on the training dataset:

gen(µ, PW |S) , EW,S [Lµ(W )− LS(W )], (3)

where the expectation is taken over the joint distribution
PS,W = PS ⊗ PW |S . The generalization error is used to
measure the extent to which the learning algorithm overfits
the training data.

Traditional ways of bounding the generalization error can
be categorized into two groups: (1) by measuring the com-
plexity of the hypothesis space W , e.g., VC dimension and
Rademacher complexity [1]; and (2) by exploring properties

of the learning algorithm, e.g., uniform stability [2]. Recently,
it was proposed in [3] and further studied in [4] and [5] that
the metric of mutual information can be used to develop upper
bounds on the generalization error of a learning algorithm.
Such an information-theoretic framework can handle a broader
range of problems, e.g., problems with unbounded loss func-
tion. More importantly, it offers an information-theoretic point
of view on how to improve the generalization capability of a
learning algorithm.

In this paper, we follow the information-theoretic framework
in [3]–[5]. Our main contribution is a tighter upper bound on
the generalization error using the mutual information I(Zi;W )
between an individual training sample Zi and the output hy-
pothesis W of the learning algorithm. We show that compared
to existing studies, our bound has a broader applicability, and
can be considerably tighter.

A. Main Contributions and Comparison to Related Works

The following lemma from [4] provides an upper bound on
the generalization error using the mutual information I(S;W )
between the training data set S and the output hypothesis W .

Lemma 1. [4, Theorem 1] Suppose `(w,Z) is R-sub-
Gaussian 1 under Z ∼ µ for all w ∈ W , then

|gen(µ, PW |S)| ≤
√

2R2

n
I(S;W ). (4)

This mutual information based bound in (4) is related to the
on-average stability [6], and quantifies the overall dependence
between the output of the learning algorithm and its input
dataset using I(S;W ). By further exploiting the structure
of the hypothesis space and the dependency between the
algorithm input and output, the authors of [5] combined the
chaining and mutual information methods, and obtained a
tighter bound on the generalization error.

However, the bound in Lemma 1 and the chaining mutual
information (CMI) bound in [5] both suffer from the following
two shortcomings. First, for empirical risk minimization (ER-
M), if W is the unique minimizer of LS(w) in W , the mutual
information I(S;W ) =∞. It can be shown that both bounds
are not tight in this case. Second, both bounds assume that
`(w,Z) has a bounded cumulant generating function (CGF)

1A random variable X is R-sub-Gaussian if logE[eλ(X−EX)] ≤ R2λ2

2
,

∀λ ∈ R.
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under Z ∼ µ for all w ∈ W , which may not hold for many
problems.

In this paper, we get around these shortcomings by com-
bining the idea of algorithmic stability [6], [7] and the in-
formation theoretic framework. Specifically, an algorithm is
stable if the output hypothesis does not change too much
with the replacement of any individual training sample, and
if an algorithm is stable, then it generalizes well [6], [7].
Motivated by these facts, we tighten the mutual information
based generalization error bound by considering the individual
sample mutual information (ISMI) I(W ;Zi). Compared with
the bound in Lemma 1, and the CMI bound in [5], the
ISMI bound requires a weaker condition on the CGF of the
loss function, is applicable to a broader range of problems,
and provides a tighter characterization of the generalization
error. We also comprehensively study three examples, and
compare the ISMI bound with existing results to demonstrate
its superiority.

II. PRELIMINARIES

We use upper letters to denote random variables, and
calligraphic upper letters to denote sets. For a random variable
X generated from a distribution µ, we use EX∼µ to denote
the expectation taken over X with distribution µ. We write
Id to denote the d-dimensional identity matrix. All logarithms
are natural ones.

The cumulant generating function (CGF) of a random
variable X is defined as ΛX(λ) , logE[eλ(X−EX)]. It can
be verified that ΛX(0) = Λ′X(0) = 0, and that ΛX(λ) is
convex if it exists.

Definition 1. For a convex function ψ defined on the interval
[0, b), where 0 < b ≤ ∞, its Legendre dual ψ∗ is defined as

ψ∗(x) , sup
λ∈[0,b)

(
λx− ψ(λ)

)
. (5)

The following lemma characterizes the property of Legendre
dual and its inverse function.

Lemma 2. [8, Lemma 2.4] Assume that ψ(0) = ψ′(0) =
0. Then ψ∗(x) defined above is a nonnegative convex and
non-decreasing function on [0,∞) with ψ∗(0) = 0. Moreover,
its inverse function ψ∗−1(y) = inf{x ≥ 0 : ψ∗(x) ≥ y} is
concave, and can be written as

ψ∗−1(y) = inf
λ∈(0,b)

(y + ψ(λ)

λ

)
. (6)

For a R-sub-Gaussian random variable X , let ψ(λ) =

ΛX(λ) = R2λ2

2 , then by Lemma 2, ψ∗−1(y) =
√

2R2y.

III. BOUNDING GENERALIZATION ERROR VIA I(W ;Zi)

In this section, we first generalize the decoupling lemma in
[4, Lemma 1] to a more general setting, and then tighten the
bound on generalization error via I(W ;Zi).

A. General Decoupling Estimate

Consider a pair of random variables W and Z with joint
distribution PW,Z . Let W̃ be an independent copy of W , and
Z̃ be an independent copy of Z, such that P

W̃ Z̃
= PW ⊗PZ .

Suppose f :W×Z → R is a real-valued function. If the CGF
Λ
f(W̃ ,Z̃)

(λ) of f(W̃ , Z̃) is upper bounded for λ ∈ (b−, b+),
we have the following theorem.

Theorem 1. Assume that Λ
f(W̃ ,Z̃)

(λ) ≤ ψ+(λ) for λ ∈
[0, b+), and Λ

f(W̃ ,Z̃)
(λ) ≤ ψ−(−λ) for λ ∈ (b−, 0] under

distribution P
W̃ Z̃

= PW ⊗ PZ , where 0 < b+ ≤ ∞ and
−∞ ≤ b− < 0. Suppose that ψ+(λ) and ψ−(λ) are convex,
and ψ+(0) = ψ′+(0) = ψ−(0) = ψ′−(0) = 0. Then,

E[f(W,Z)]− E[f(W̃ , Z̃)] ≤ ψ∗−1+

(
I(W ;Z)

)
, (7)

E[f(W̃ , Z̃)]− E[f(W,Z)] ≤ ψ∗−1−
(
I(W ;Z)

)
. (8)

Proof. Consider the Donsker-Varadhan variational representa-
tion of the relative entropy between two probability measures
P and Q defined on X :

D(P‖Q) = sup
g∈G

{
EP [g(X)]− logEQ[eg(X)]

}
, (9)

where the supremum is over all measurable functions G = {g :
X → R, s.t. EQ[eg(X)] < ∞}, and the equality is achieved
when g = log P

Q . It then follows that ∀λ ∈ [0, b+),

D(PW,Z‖PW ⊗ PZ) ≥ E[λf(W,Z)]− logE[eλf(W̃ ,Z̃)]

≥ λ(E[f(W,Z)]− E[f(W̃ , Z̃)])− ψ+(λ), (10)

where the last inequality follows from the assumption that

logE[eλ(f(W̃ ,Z̃)−Ef(W̃ ,Z̃))] ≤ ψ+(λ), ∀λ ∈ [0, b+). (11)

Similarly, ∀λ ∈ (b−, 0], it follows that

D(PW,Z‖PW ⊗ PZ)

≥ λ(E[f(W,Z)]− E[f(W̃ , Z̃)])− ψ−(−λ). (12)

If λ ∈ [0, b+),

E[f(W,Z)]− E[f(W̃ , Z̃)] ≤ inf
λ∈[0,b+)

I(W ;Z) + ψ+(λ)

λ

= ψ∗−1+

(
I(W ;Z)

)
, (13)

and if λ ∈ (b−, 0],

E[f(W̃ , Z̃)]− E[f(W,Z)] ≤ inf
λ∈[0,−b−)

I(W ;Z) + ψ−(λ)

λ

= ψ∗−1−
(
I(W ;Z)

)
, (14)

where the equalities in (13) and (14) follow from Lemma 2.

Theorem 1 provides a more general characterization of the
decoupling estimate than existing results. Specifically, it is
assumed that the CGF of f(w,Z) is bounded for all w ∈ W
in [4, Lemma 1] and [9, Theorem 2], whereas in Theorem 1,
it is only assumed that the CGF of f(W̃ , Z̃) is bounded in
expectation under PW ⊗ PZ .
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B. Individual Sample Mutual Information Bound

Motivated by the idea of algorithmic stability, which mea-
sures how much an output hypothesis changes with the re-
placement of an individual training sample, we construct an
upper bound on the generalization error via I(W ;Zi).

Theorem 2. Suppose `(W̃ , Z̃) satisfies Λ
`(W̃ ,Z̃)

(λ) ≤ ψ+(λ)

for λ ∈ [0, b+), and Λ
`(W̃ ,Z̃)

(λ) ≤ ψ−(−λ) for λ ∈ (b−, 0]
under P

Z̃,W̃
= µ ⊗ PW , where 0 < b+ ≤ ∞ and −∞ ≤

b− < 0. Then,

gen(µ, PW |S) ≤ 1

n

n∑
i=1

ψ∗−1−
(
I(W ;Zi)

)
, (15)

−gen(µ, PW |S) ≤ 1

n

n∑
i=1

ψ∗−1+

(
I(W ;Zi)

)
. (16)

Proof. The generalization error can be written as follows:

gen(µ, PW |S) =
1

n

n∑
i=1

(
EW,Z [`(W, Z̃)]− EW,Zi [`(W,Zi)]

)
,

where W and Zi in the second term are dependent with
PW,Zi = µ ⊗ PW |Zi , and W and Z̃ in the first term are
independent with the same marginal distributions. Applying
Theorem 1 completes the proof.

The following Proposition shows that the ISMI bound is
always tighter than the bound in Lemma 1.

Proposition 1. Suppose `(w,Z) is R-sub-Gaussian under
Z ∼ µ for all w ∈ W , then

|gen(µ, PW |S)| ≤ 1

n

n∑
i=1

√
2R2I(W ;Zi) ≤

√
2R2

n
I(W ;S).

Proof. It is clear that if `(w,Z) is R-sub-Gaussian under
Z ∼ µ for all w ∈ W , then `(W̃ , Z̃) is also R-sub-Gaussian.
For R-sub-Gaussian random variables, it is easy to show
that ψ−1+ (y) = ψ−1− (y) =

√
2R2y. The first inequality then

follows from Theorem 2.
For the second part, by the chain rule of mutual information,

I(W ;S) =

n∑
i=1

I(W ;Zi|Zi−1) ≥
n∑
i=1

I(W ;Zi), (17)

where Zj = {Z1, · · · , Zj}, and the last step follows by the
fact that Zi and Zi−1 are independent. Applying Jensen’s
inequality completes the proof.

Remark 1. If ψ∗−1+ (y) and ψ∗−1− (y) are concave, it can be
shown that the ISMI bound in Theorem 2 is also tighter than
the bound using I(S;W ) in [9].

IV. EXAMPLES WITH INFINITE I(W ;S)

In this section, we consider two examples with infinite
I(W ;S). We show that for these two examples, the upper
bound on generalization error in Lemma 1 blows up, whereas
the ISMI bound in Theorem 2 still provides an accurate
approximation.

A. Estimating the Mean

We first consider the problem of learning the mean of a
Gaussian random vector Z ∼ N (µ, σ2Id), which minimizes
the mean square error `(w,Z) , E‖w − Z‖22. The empirical
risk with n i.i.d. samples is LS(w) , 1

n

∑n
i=1 ‖w − Zi‖22.

The empirical risk minimization (ERM) solution is the sample
mean W = 1

n

∑n
i=1 Zi, which is deterministic given S. Its

generalization error can be computed exactly as follows:

gen(µ, PW |S) =
2σ2d

n
. (18)

The bound in Lemma 1 is not applicable here due to the
following two reasons: (1) W is a deterministic function of
S, and hence I(S;W ) = ∞; and (2) since Z is a Gaussian
random vector, the loss function `(w,Z) = ‖w − Z‖22 is not
sub-Gaussian. Specifically, the variance of the loss function
`(w,Z) diverges as ‖w‖2 →∞, which implies that a uniform
upper bound on Λ`(w,Z)(λ), ∀w ∈ Rd does not exist.

Both of these issues can be solved by applying the ISMI
bound in Theorem 2. Since W ∼ N (µ, σ

2Id
n ), the mutual

information between each individual sample and the output
hypothesis I(W ;Zi) can be computed exactly as follows:

I(W ;Zi) =
d

2
log

n

n− 1
, i = 1, · · · , n. (19)

In addition, since W ∼ N (µ, σ
2Id
n ), it can be shown that

`(W, Z̃) ∼ σ2
`χ

2
d, where σ2

` , (n+1)σ2

n , and χ2
d denotes the

chi-squared distribution with d degrees of freedom. Then, the
CGF of `(W̃ , Z̃) is

Λ
`(W̃ ,Z̃)

(λ) = −dσ2
`λ−

d

2
log(1− 2σ2

`λ), λ ∈ (−∞, 1

2σ2
`

).

Since W is the ERM solution, it follows that gen(µ, PW |S) ≥
0. We only need to consider the case λ < 0. It can be shown
that

Λ
`(W̃ ,Z̃)

(λ) ≤ dσ4
`λ

2 , ψ−(−λ), λ < 0. (20)

Then, ψ∗−1− (y) = 2
√
dσ4

` y. Combining the results in (19), we
have

gen(µ, PW |S) ≤ σ2d

√
2(n+ 1)2

n2
log

n

n− 1
. (21)

As n→∞, the above bound is O( 1√
n

), which is usually the
case when one applies bounding techniques based on the VC
dimension [1], and algorithmic stability [2].

B. Gaussian Process

In this subsection, we revisit the example studied in [5]. Let
W = {w ∈ R2 : ‖w‖2 = 1}, and Z ∼ N (0, I2) be a standard
normal random vector in R2. The loss function is defined to
be the following Gaussian process indexed by w:

`(w,Z) , −〈w,Z〉, ∀w ∈ W. (22)

Note that the loss function `(w,Z) is sub-Gaussian with
parameter R = 1 for all w ∈ W . In addition, the output
hypothesis w ∈ W can also be represented equivalently using
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Fig. 1. Comparison of generalization bounds for the ERM algorithm.

Fig. 2. Comparison of different generalization bounds for the ERM algorithm
with an additive noise.

the phase of w. In other words, we can let φ be the unique
number in [0, 2π) such that w = (sinφ, cosφ). For this
problem, the empirical risk of a hypothesis w ∈ W is given
by LS(w) = − 1

n

∑n
i=1〈w,Zi〉.

We consider two learning algorithms which are the same as
the ones in [5]. The first is the ERM algorithm:

W = arg min
φ∈[0,2π)

LS(w) = arg max
φ∈[0,2π)

〈w, 1

n

n∑
i=1

Zi〉. (23)

The second is the ERM algorithm with additive noise:

W ′ =
(

arg max
φ∈[0,2π)

〈w, 1

n

n∑
i=1

Zi〉
)
⊕ ξ (mod 2π), (24)

where the noise ξ is independent of S, and has an atom
with probability mass ε at 0, and probability 1− ε uniformly
distributed on (−π, π). Due to the symmetry of the problem,
W and W ′ are uniformly distributed over [0, 2π).

For this example, the generalization error of W can be
computed exactly as follows:

gen(µ, PW |S) = EW,S
∥∥∥ 1

n

n∑
i=1

Zi

∥∥∥
2

=

√
π

2n
, (25)

where the last step is due to the fact that the distribution of
‖ 1n
∑n
i=1 Zi‖2 is Rayleigh( 1

n ). For the second algorithm W ′,
since the noise ξ is independent from S, it follows that

gen(µ, PW ′|S) = ε

√
π

2n
. (26)

The bound via I(W ;S) in Lemma 1 is not applicable, since
W is deterministic given S and I(W ;S) =∞. Moreover, for
the second algorithm W ′,

I(W ′;S) = h(W ′)− h(W ′|S) = log 2π − h(ξ) =∞, (27)

since ξ has a singular component at 0, and h(ξ) = −∞.

Applying the ISMI bound in Theorem 2 to the ERM
algorithm W , we have that

I(W ;Zi) = h(W )− h(W |Zi) = log 2π − h(W |Zi)
= log 2π − EZi [h(W |Zi = zi)]. (28)

Note that given Zi = zi, the ERM solution is

W = arg max
φ∈[0,2π)

〈w, zi
n

+
1

n

∑
j 6=i

Zi〉, (29)

which depends on the other samples Zj , j 6= i. Moreover,
it can be shown that PW |Zi=zi is equivalent to the phase
distribution of a Gaussian random variable N ( zin ,

n−1
n2 I2) in

polar coordinates. Due to symmetry, we can always rotate the
polar coordinates, such that zi = (r, 0), where r ∈ R+ is the
Euclidian norm of zi. Then, PW |Zi=zi is a function of r, and
can be equivalently characterized by

f
(
φ
∣∣‖Zi‖ = r

)
=

1

2π
e−

r2

2(n−1)

+
r cosφ√
2π(n− 1)

e−
r2 sin2 φ
2(n−1) Q(−r cosφ

n− 1
), (30)

where Q(x) is the tail distribution function of the standard
normal distribution. Since the norm of Zi has a Rayleigh
distribution with unit variance, it then follows that

I(W ;Zi) = log 2π − E‖Zi‖
[
h
(
f(φ
∣∣‖Zi‖ = r)

)]
. (31)

Applying Theorem 2, we obtain

|gen(µ, PW |S)| ≤ 1

n

n∑
i=1

√
2I(W ;Zi) =

√
2I(W ;Zi). (32)

Similarly, we can compute the ISMI bound for W ′.
Numerical comparisons are presented in Fig. 1 and Fig. 2.

In both figures, we plot the ISMI bound, the CMI bound in [5],
and the true values of the generalization error, as functions of
the number of samples n. In Fig. 1, we compare these bounds
for the ERM solution W . Note that the CMI bound reduces to
the classical chaining bound in this case. In Fig. 2, we evaluate
these bounds for the noisy algorithm W ′ with ε = 0.05. Both
figures demonstrate that the ISMI bound is closer to the true
values of the generalization error, and outperforms the CMI
bound significantly.

V. NOISY, ITERATIVE ALGORITHMS

In this section, we apply the ISMI bound in Theorem 2 to
a class of noisy, iterative algorithms, specifically, stochastic
gradient Langevin dynamics (SGLD).

A. SGLD Algorithm

Denote the parameter vector at iteration t by W(t) ∈ Rd,
and let W(0) ∈ W denote an arbitrary initialization. At each
iteration t ≥ 1, we sample a training data point ZU(t)

∈ S,
where U(t) ∈ {1, ..., n} denotes the random index of the
sample selected at iteration t, and compute the gradient
∇`(W(t−1), ZU(t)

). We then scale the gradient by a step size
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η(t) and perturb it by isotropic Gaussian noise ξ ∼ N (0, Id).
The overall updating rule is as follows [10]:

W(t) = W(t−1) − η(t)∇`(W(t−1), ZU(t)
) + σ(t)ξ, (33)

where σ(t) controls the variance of the Gaussian noise.
For t ≥ 0, let W (t) , {W(1), · · · , W(t)} and U (t) ,

{U(1), · · · , U(t)}. We assume that the training process takes K
epochs. For the k-th training epoch, i.e., from ((k−1)n+1)-th
to kn-th iterations, all training samples in S are used exactly
once. The total number of iterations is T = nK. The output
of the algorithm is W = W(T ).

In the following, we use the same assumptions as in [11].

Assumption 1. `(w,Z) is R-sub-Gaussian with respect to
Z ∼ µ, for every w ∈ W .

Assumption 2. The gradients are bounded, i.e.,
supw∈W,z∈Z ‖∇`(W, z)‖2 ≤ L, for some L > 0.

In [11], the following bound was obtained by upper bound-
ing I(W ;S) in Lemma 1.

Lemma 3. [11, Corollary 1] The generalization error of the
SGLD algorithm is bounded by

|gen(µ, PW |S)| ≤

√√√√R2

n

T∑
t=1

η2tL
2

σ2
t

. (34)

B. ISMI Bound for SGLD
To apply the ISMI bound for SGLD, we modify the result

in Theorem 2 by conditioning the random sample path U (T ),

|gen(µ, PW |S)|

=
∣∣∣EU(T )

[ 1
n

n∑
i=1

(
EW,Z̃ [`(W, Z̃)]− EW,Zi [`(W,Zi)|U

(T )]
)]∣∣∣

≤ 1

|U|
∑

u(T )∈U

( 1
n

n∑
i=1

√
2R2I(W ;Zi|U (T ) = u(T ))

)
, (35)

where U denotes the set of all possible sample paths.
Let Ti(u(T )) denote the set of iterations for which samples

Zi is selected for a given sample path u(T ). Using the chain
rule of mutual information, we have

I(W ;Zi|U (T ) = u(T ))

≤ I(Zi;W
(T )|U (T ) = u(T ))

=

T∑
τ=1

I(Zi;W(τ)|W(τ−1), U
(T ) = u(T ))

=
∑

τ∈Ti(u(T ))

I(Zi;W(τ)|W(τ−1), U
(T ) = u(T )), (36)

where the last equality is due to the fact that given u(T ) and
W(τ−1), Zi is independent of W(τ), if τ /∈ Ti(u(T )). For τ ∈
Ti(B(T )), i.e., if Zi is selected at iteration τ , we have

I(Zi;W(τ)|W(τ−1), U
(T ) = u(T ))

= h
(
η(τ)∇`(W(τ−1), Zi) + σ(τ)ξ|W(τ−1)

)
− h(σ(τ)ξ)

≤ d

2
log
(
1 +

η2(τ)L
2

dσ2
(τ)

)
, (37)

where the last step follows from Assumption 2 and the fact
that ξ is an independent Gaussian noise as in [11].

Combining with (35), it follows that

|gen(µ, PW |S)| ≤ EU(T )

[
R

n

n∑
i=1

√√√√ ∑
τ∈Ti(U(T ))

η2(τ)L
2

σ2
(τ)

]
, (38)

where we remove the log term by using log(1 + x) ≤ x.

C. Discussion
As in [11], we set η(t) = c

t , and σ(t) =
√
ηt. Then,

|gen(µ, PW |S)| ≤
RL

n
EU(T )

[ n∑
i=1

√ ∑
τ∈Ti(U(T ))

c

τ

]
(a)

≤ RL
√
c

n

n∑
i=1

√√√√1

i
+

K−1∑
k=1

1

nk

(b)

≤ RL
√
c

n

n∑
i=1

√
1

i
+

log(K − 1) + 1

n

(c)

≤ RL√
n

(√
c log(K − 1) + c+ o(log logK)

)
,

where (a) follows from the sampling scheme that all samples
are used exactly once in each epoch; (b) is due to the fact
that

∑K
k=1

1
k ≤ log(K)+1; and (c) follows by computing the

integral
∫ 1

0

√
1
x + 1 + log(K − 1)dx.

Comparing with the bound in [11],

|gen(µ, PW |S)| ≤ RL√
n

√
c log(nK) + c, (39)

it can be seen that our bound is tighter by a factor of
√

log n.
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