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Abstract—Generalization error bounds are essential to un-
derstanding machine learning algorithms. This paper presents
novel expected generalization error upper bounds based on the
average joint distribution between the output hypothesis and
each input training sample. Multiple generalization error upper
bounds based on different information measures are provided,
including Wasserstein distance, total variation distance, KL
divergence, and Jensen-Shannon divergence. Due to the convexity
of the information measures, the proposed bounds in terms of
Wasserstein distance and total variation distance are shown to
be tighter than their counterparts based on individual samples
in the literature. An example is provided to demonstrate the
tightness of the proposed generalization error bounds.

I. INTRODUCTION

Machine learning algorithms are increasingly adopted to
solve various problems in a wide range of applications. Under-
standing the generalization behavior of a learning algorithm is
one of the most important challenges in statistical learning
theory. Various approaches have been developed to bound
the generalization error [1], including VC dimension-based
bounds [2], algorithmic stability-based bounds [3], algorith-
mic robustness-based bounds [4], PAC-Bayesian bounds [5].

More recently, approaches leveraging information-theoretic
tools have been developed to characterize the generalization
error of a learning algorithm. Such approaches incorporate
various ingredients associated with a supervised learning prob-
lem, including the data generating distribution, the hypothesis
space, and the learning algorithm itself, expressing expected
generalization error in terms of specific information measures
between the input of training dataset and output hypothesis.

In particular, building upon pioneering work by Russo
and Zou [6], an expected generalization error upper based
on the mutual information between the training set and the
hypothesis is proposed by Xu and Raginsky [7]. Bu et al. [8]
have derived tighter generalization error bounds based on
individual sample mutual information. The generalization error
bounds based on other information measures such as α-Réyni
divergence [9], maximal leakage [10], Jensen-Shannon diver-
gence [11], Wasserstein distances [12], [13] and individual
sample Wasserstein distance [14] are also considered. Chain-
ing mutual information technique is proposed in [15] and [16]
to further improve the mutual information-based bound. The
upper bounds based on conditional mutual information and

∗
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individual sample conditional mutual information are proposed
in [17] and [18], respectively. It is shown in [19], [20], the
combination of conditioning and processing techniques could
provide tighter generalization error upper bounds. Using rate-
distortion theory, [21]–[23] provide information-theoretic gen-
eralization error upper bounds for model misspecification and
model compression, respectively. An exact characterization of
the generalization error for the Gibbs algorithm in terms of
symmetrized KL information is provided in [24].

In this paper, we introduce the notion of average joint
distribution, which is the average of the distribution between
the output hypothesis and each training sample. We aspire to
provide a more refined analysis of the generalization ability of
randomized learning algorithms by representing the expected
generalization error using the aforementioned average joint
distribution. The merit of this representation is that it di-
rectly leads to some tighter generalization error upper bounds
based on the convexity of the information measures, including
Wasserstein distance and total variation distance. The proposed
bound finds its application when the importance of each
training sample is not the same in the learning algorithm, e.g.,
imbalanced classification or learning under noisy data samples.

More specifically, our contributions are as follows:
• We provide novel expected generalization error upper

bounds based on the average joint distribution between
the output hypothesis and each input training sample, in
terms of Wasserstein distance, total variation distance, KL
divergence, and Jensen-Shannon divergence.

• We offer an upper bound on the difference between the
empirical risk of two learning algorithms using the KL
divergence between average joint distributions.

• We construct a simple numerical example to demonstrate
the improvement of the proposed upper bound based on
the average joint distribution in comparison to individual
sample mutual information bound [8].

Notations: A random variable is denoted by an upper-case
letter (e.g., Z), its alphabet is denoted by the corresponding
calligraphic letter (e.g., Z), and the realization of the random
variable is denoted with a lower-case letter (e.g., z). The
probability distribution of the random variable Z is denoted
by PZ . The joint distribution of a pair of random variables
(Z1, Z2) is denoted by PZ1,Z2 .

Information Measures: The differential entropy of a con-
tinuous probability measure P defined over space Z is given
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by h(P ) ≜
∫
Z −dP log(dP ). If P and Q are probability

measures defined over space Z , and P is absolutely continuous
with respect to Q, the Kullback-Leibler (KL) divergence
between P and Q is given by D(P∥Q) ≜

∫
Z log

(
dP
dQ

)
dP .

The Donsker-Varadhan variational representation of the KL
divergence is as follows [25],

D(P∥Q) = sup
g∈G

{
EP [g(Z)]− log(EQ[e

g(Z)])
}
, (1)

where the supremum is over all measurable functions, i.e.,
G = {g : Z → R, s.t. EQ[e

g(Z)] < ∞}.
The Jensen-Shannon divergence [26] is defined as

DJS(P∥Q) ≜
D(P∥P+Q

2 )

2
+

D(Q∥P+Q
2 )

2
, (2)

and it can be verified that DJS(P∥Q) ≤ log(2).
The mutual information between two random variables X

and Y is defined as the KL divergence between their joint
distribution and the product of the marginals, i.e., I(X;Y ) ≜
D(PX,Y ∥PX ⊗ PY ). Similarly, the Lautum information in-
troduced in [27] is defined as the KL divergence between
the product of the marginals and the joint distribution, i.e.,
L(X;Y ) ≜ D(PX ⊗ PY ∥PX,Y ).

The Wasserstein distance between P and Q is defined using
a metric ρ : Z × Z → R+

0 , and it is given by:

W(P,Q) = inf
π∈Π(P,Q)

∫
Z×Z

ρ(z, z′)dπ(z, z′), (3)

where Π(P,Q) is the set of all joint distributions π over the
product space Z × Z with marginal distributions P and Q.
When Z is a normed space with norm ∥ · ∥, simply taking
ρ(z, z′) = ∥z − z′∥ leads to

W(P,Q) ≜ inf
π∈Π(P,Q)

∫
Z×Z

∥z − z′∥ dπ(z, z′). (4)

Another representation for the Wasserstein distance is given
by the Kantorovich-Rubinstein duality [28], i.e.,

W(P,Q) = sup
g∈{g:Lip(g)≤1}

{EP [g(Z)]− EQ[g(Z)]} , (5)

where Lip(g) denotes the Lipschitz constant of function g :
Z → R, namely

Lip(g) ≜ inf
{
L > 0 : (6)

|g(z1)− g(z2)| ≤ L∥z1 − z2∥, z1, z2 ∈ Z
}
.

The total variation distance between P and Q is given by

TV(P,Q) ≜
1

2

∫
|dP − dQ|. (7)

Note that total variation distance also arises from Wasserstein
distance [28], i.e., TV(P,Q) = W(P,Q), when ρ(z, z′) =
1{z ̸= z′} where 1 is an indicator function.

II. PROBLEM FORMULATION

Let S = {Zi}ni=1 be the training set, where each Zi is
defined on the same alphabet Z . Note that Zi is not required to
be i.i.d generated from the same data-generating distribution
PZ , and we denote the joint distribution of all the training
samples as PS . We denote the hypotheses by w ∈ W , where
W is a hypothesis class. The performance of the hypothesis is
measured by a non-negative loss function ℓ : W ×Z → R+

0 ,
and we can define the empirical risk and the population risk
associated with a given hypothesis w as

LE(w, s) ≜
1

n

n∑
i=1

ℓ(w, zi), (8)

LP (w,PS) ≜ EPS
[LE(w, S)], (9)

respectively. A learning algorithm can be modeled as a ran-
domized mapping from the training set S onto an hypothesis
W ∈ W according to the conditional distribution PW |S . Thus,
the expected generalization error quantifying the degree of
over-fitting can be written as

gen(PW |S , PS) ≜ EPW,S
[LP (W,PS)− LE(W,S)], (10)

where the expectation is taken over the joint distribution
PW,S = PW |S ⊗ PS .

In this paper, we construct different upper bounds for
generalization error using the average joint distribution, which
is defined as

PW,Z(w, z) ≜
1

n

n∑
i=1

PW,Zi
(w, z). (11)

Note that the average sample distribution is defined as

PZ(z) ≜
1

n

n∑
i=1

PZi
(z). (12)

It is worthwhile to mention that under i.i.d assumption we
have PZ = PZ . Similarly, the average conditional distribution
is defined as

PW |Z=z(w) =
1

n

n∑
i=1

PW |Zi=z(w). (13)

A learning algorithm is said to be symmetric, if the conditional
distributions between each sample Zi and hypothesis W are
the same, i.e., PW |Zi

= PW |Z , ∀i ∈ {1, · · · , n}.

III. GENERALIZATION ERROR UPPER BOUNDS

This section provides expected generalization error upper
bounds in terms of different information measures, including
Wasserstein distance, total variation distance, KL divergence,
and Jensen-Shannon divergence. In the case of Wasserstein
distance and total variation distance, our upper bounds are
shown to be tighter than existing upper bounds based on these
information measures.

To present our result, we first show that the expected
generalization error can be expressed in terms of the average
joint distribution (11).
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Proposition 1. The expected generalization error of a learning
algorithm PW |S can be written as

gen(PW |S , PS) = EPW⊗PZ
[ℓ(W,Z)]− EPW,Z

[ℓ(W,Z)].

(14)

Proof. By the definition of generalization error, we have

gen(PW |S , PS) = EPW,S [LP (W,PS)− LE(W,S)]

=
1

n

n∑
i=1

EPW⊗PZi
[ℓ(W,Z)]− 1

n

n∑
i=1

EPW,Zi
[ℓ(W,Z)] (15)

= EPW⊗ 1
n

∑n
i=1 PZi

[ℓ(W,Z)]− E 1
n

∑n
i=1 PW,Zi

[ℓ(W,Z)],

where the last line follows by the linearity of expectation.

This characterization embodied in Proposition 1 leads di-
rectly to various generalization error bounds in terms of
different information measures.

A. Wasserstein Distance-based Upper Bound

In the following theorem, we provide a generalization error
upper bound based on Wasserstein distance using (14) under
Lipschitz condition.

Theorem 1. Suppose that for all z ∈ Z , the loss function
ℓ(·, z) is L-Lipschitz, and we have i.i.d. training samples S =
{Zi}ni=1. Then, we have the following upper bound

|gen(PW |S , PS)| ≤ LEPZ
[W(PW |Z , PW )]. (16)

Proof. We have PZ = PZ for i.i.d. data samples, then
PW,Z = PW |Z ⊗ PZ . By (14), we have

|gen(PW |S , PS)| = |EPZ
[EPW

[ℓ(W,Z)]− EPW |Z
[ℓ(W,Z)]]|

≤ LEPZ
[W(PW |Z , PW )], (17)

where the last inequality follows from Kantorovich-Rubinstein
duality (5).

In the following, we show that our upper bound in Theo-
rem 1 would be tighter than the individual sample Wasserstein
distance upper bound in [14].

Proposition 2. Under the same assumption as in Theorem 1,
the upper bound in Theorem 1 is always no worse than the
upper bound in [14, Theorem 1], i.e.,

|gen(PW |S , PS)| ≤ LEPZ
[W(PW |Z , PW )]

≤ L

n

n∑
i=1

EPZ
[W(PW |Zi

, PW )]. (18)

Proof. By Kantorovich-Rubinstein duality (5), we have

LW(PW |Z , PW ) = sup
g∈{g:Lip(g)≤1}

{EP
W |Z

[g]− EPW [g]}

≤ 1

n

n∑
i=1

sup
g∈{g:Lip(g)≤1}

{EPW |Zi
[g]− EPW [g]}

=
1

n

n∑
i=1

W(PW |Zi
, PW ), (19)

where the inequality follows from convexity of supremum
function.

Remark 1. The upper bound based on average conditional
distribution in Theorem 1 will reduce to the individual sample
Wasserstein distance based upper bound in [14, Theorem 1]
when the learning algorithm PW |S is symmetric, i.e., PW |Zi

=
PW |Z for all i.

B. Total Variation Distance-based Upper Bound

In the following result, we provide a tighter expected
generalization error upper bound in terms of total variation
distance for bounded loss functions.

Proposition 3. Suppose that the loss function is bounded, i.e.,
ℓ ∈ [a, b], and we have i.i.d. training samples S = {Zi}ni=1.
Then, the following upper bound holds

|gen(PW |S , PS)| ≤ (b− a)EPZ
[TV(PW |Z , PW )]

= TV(PW,Z , PW ⊗ PZ). (20)

Proof. The bounded condition implies that the loss function
ℓ(·, z) is (b − a)-Lipschitz for all z ∈ Z . Recall that total
variation distance is a special case of Wasserstein distance
with ρ(z, z′) = 1{z ̸= z′}, then the inequality can be proved
by applying Theorem 1 directly.

By the assumption of i.i.d. training samples and the defini-
tion of total variation in (7), we have

EPZ
[TV(PW |Z , PW )] = TV(PW,Z , PW ⊗ PZ), (21)

which completes the proof for the equality.

Next, we compare our upper bound in terms of total
variation distance with the individual sample total variation
distance based upper bound in [14, Corollary 1].

Corollary 1. Under the same assumptions as in Proposition 3,
the upper bound in Proposition 3 is always no worse than
the individual sample total variation distance bound in [14,
Corollary 1], i.e.,

|gen(PW |S , PS)| ≤ (b− a)EPZ
[TV(PW |Z , PW )]

≤ (b− a)

n

n∑
i=1

EPZ
[TV(PW |Zi

, PW )]. (22)

Proof. As the total variation is an f -divergence, it has the joint
convexity property with respect to its input [25]. Thus, the
result follows by applying the convexity of the total variation
distance in (22).

Remark 2. Under the same assumptions as in Proposition 3,
it is shown in [14, Corollary 1] that the upper bound based on
individual sample total variation distance is tighter than the
Individual sample mutual information (ISMI) [8]. Therefore,
our upper bound in Proposition 2 and Corollary 1 would also
be tighter than the ISMI bound.

The proposed bound in Proposition 3 will reduce to the
individual sample total variation distance-based bound in [14,
Corollary 1], when the learning algorithm is symmetric. How-
ever, we may want to use non-symmetric learning algorithm
in practice since the importance of each training sample is
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not the same, e.g., imbalanced classification or learning under
noisy data samples. As we will show in Section V, for a non-
symmetric learning algorithm, our proposed upper bound will
be strictly tighter than the bound in [14, Corollary 1].
C. KL Divergence-based Upper Bound

In the following theorem, we provide an upper bound
in terms of KL divergence using (14) under sub-Gaussian
condition.

Theorem 2. Suppose that the loss function ℓ(w, z) is σ-sub-
Gaussian1 under distribution PW ⊗ PZ . The following upper
bound holds on the expected generalization error

gen(PW |S , PS) ≤
√
2σ2D(PW,Z∥PW ⊗ PZ). (23)

Sketch of Proof. Applying the Donsker-Varadhan representa-
tion of KL divergence (1) to the generalization error expressed
in (14) and using the σ-sub-Gaussianity in a similar approach
to [7, Lemma 1], it completes the proof.

In the following, we compare our KL divergence based
upper bound with the mutual information based bound in [7,
Theorem 1].

Corollary 2. Under the same assumption as in Theorem 2, and
further assume that training samples S = {Zi}ni=1 are i.i.d.,
the upper bound in Theorem 2 is no worse than the mutual
information-based upper bound in [7, Theorem 1], i.e.,

gen(PW |S , PS) ≤
√
2σ2D(PW,Z∥PW ⊗ PZ)

≤
√

2σ2

n
I(W ;S). (24)

Proof. Under i.i.d assumption, PZ = PZ . Then, we have

gen(PW |S , PS) ≤
√

2σ2D(PW,Z∥PW ⊗ PZ) (25)

≤

√√√√2σ2

n

n∑
i=1

D(PW,Zi∥PW ⊗ PZ) (26)

=

√√√√2σ2

n

n∑
i=1

I(W ;Zi) (27)

≤
√

2σ2

n
I(W ;S), (28)

where the second inequality follows from the convexity of KL
divergence, and the last inequality is due to the chain rule of
mutual information and the i.i.d assumption [8, Proposition 2].

Remark 3. Under the same assumption as in Theorem 2, our
upper bound in Theorem 2 will reduce to the ISMI bound
proposed in [8, Proposition 1], when the learning algorithm
PW |S is symmetric.

We can also provide the following generalization error upper
bound in terms of the reversed KL divergence using the
average joint distribution as in (14).

1A random variable X is σ-sub-Gaussian if E[eλ(X−E[X])] ≤ e
λ2σ2

2

for all λ ∈ R.

Proposition 4. Suppose that the loss function ℓ(w, z) is σ-
sub-Gaussian under PW,Z distribution. Then, the following
upper bound holds

gen(PW |S , PS) ≤
√
2σ2D(PW ⊗ PZ∥PW,Z). (29)

Similar to Corollary 2, we have the following result.

Corollary 3. Under the same assumption as in Proposition 4,
the upper bound in Proposition 4 is always no worse than the
upper bound based on individual sample Lautum Information,

gen(PW |S , PS) ≤
√

2σ2D(PW ⊗ PZ∥PW,Z)

≤

√√√√2σ2

n

n∑
i=1

L(W ;Zi). (30)

D. Jensen-Shannon Divergence Based Upper Bound

We can also apply the average joint distribution approach
to the Jensen-Shannon divergence based upper bound in [11].

Theorem 3. Suppose that the loss function ℓ(w, z) is σ-

sub-Gaussian under distribution
PW⊗PZ+PW,Z

2 . The following
upper bound holds on the expected generalization error

|gen(PW |S , PS)| ≤ 2
√

2σ2DJS(PW,Z∥PW ⊗ PZ). (31)

Sketch of Proof. The theorem can be proved by using the
auxiliary distribution technique in [11] and considering the
generalization error representation in terms of average joint
distribution in (14).

As discussed in [25], Jensen-Shannon is a f -divergence and
it is a jointly convex function. Thus, we have:

|gen(PW |S , PS)| ≤ 2
√

2σ2DJS(PW,Z∥PW ⊗ PZ)

≤ 2

√√√√2σ2

n

n∑
i=1

DJS(PW,Zi∥PW ⊗ PZ), (32)

where (32) is an upper bound based on per sample Jensen-
Shannon divergence.

IV. THE DIFFERENCE OF EMPIRICAL RISKS

We now consider a slightly different setting. Suppose one
has access two different learning algorithms A and B, i.e.
PWA|S and PWB |S . And the goal is to quantify the difference
between the empirical risk associated with each of the learning
algorithms, i.e.,

∆E(A,B) = EPWA,WB,S
[LE(WA, S)− LE(WB , S)]. (33)

Using the average joint distribution, we can provide an upper
bound on the absolute value of the difference between the
empirical risks of these algorithms.

Proposition 5. Suppose that the loss, ℓ(w, z), is σ-sub-
Gaussian under PWB ,Z distribution. The following upper
bound holds on the expected difference between empirical risks
of two learning algorithms,

|∆E(A,B)| ≤
√

2σ2D(PWA,Z∥PWB ,Z) (34)
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Proof. ∆E(A,B) can be written as

∆E(A,B) = EPWA,WB,S
[LE(WA, S)− LE(WB , S)]

= EPWA,Z
[ℓ(W,Z)]− EPWB,Z

[ℓ(W,Z)]. (35)

The final result holds by applying Donsker-Varadhan (1) to
(35) and using σ-sub-Gaussian in a similar way as in [7,
Lemma 1].

In a similar way to Proposition 5, we could provide an upper
bound on the difference of two empirical risks achieved using a
different number of training samples. Let W ′ denote the output
of the learning algorithm trained with S′

m, which contains m
samples, and W is learned using Sn with n samples.

Corollary 4. Suppose that the loss function ℓ(w, z) is σ-sub-
Gaussian under distribution PW,Z . We have the following
upper bound on the expected difference of empirical risks
achieved using different number of training samples

|E[LE(W
′, S′

m)− LE(W,Sn)]| ≤
√
2σ2D(PW ′,Z

′∥PW,Z),

where the expectation is over the distribution PW ′,W,S′
m,Sn

.

V. NUMERICAL EXAMPLE

We illustrate that the proposed bounds can be tighter than
existing ones using a simple toy example. The goal of the
example is to estimate the mean of a Gaussian random variable
Z ∼ N (β, σ2) based on two i.i.d. samples Z1 and Z2.
We consider the estimate given by W = tZ1 + (1 − t)Z2

for 0 < t < 1, and adopt the truncated ℓ2 loss function
ℓ(w, z) = min((w − z)2, c2). Since the loss function is
bounded within the interval [0, c2], it is c2

2 -sub-Gaussian for
all w. In the following, we evaluate four generalization error
upper bounds based on different information measures: 1)
Individual sample mutual information proposed in [8, Propo-
sition 1], 2) KL divergence using average joint distribution
in Theorem 2, 3) individual sample total variation distance
in [14, Corollary 1], and 4) total variation using average
joint distribution in Proposition 3. It can be shown that
W ∼ N (β, σ2(t2 + (1− t)2)), and (W,Z1) and (W,Z2) are
jointly Gaussian with correlation coefficients ρ1 = t√

t2+(1−t)2

and ρ2 = (1−t)√
t2+(1−t)2

, respectively. Note that

D(PW,Z∥PW ⊗ PZ) = h(PW ) + h(PZ)− h(PW,Z), (36)

with h(·) denoting the differential entropy, i.e.,

h(PZ) =
1

2
log(2πσ2e),

h(PW ) =
1

2
log(2πσ2(t2 + (1− t)2)e),

whereas h(Pw,Z2) can be computed numerically.
Fig.1 depicts the four generalization error bounds based on

individual sample mutual information, KL divergence using
average joint distribution, individual sample total variation
distance, total variation distance using average joint distri-
bution, and the true generalization error. It can be seen that

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 1: Comparison of the true generalization error and four
generalization error upper bounds in Gaussian mean estimation
example with σ = 10 and c = 2, as we change t.

for t > 0.1, the upper bound based on KL divergence using
average joint distribution is tighter than the individual sample
mutual information-based upper bound. In addition, the total
variation using average joint distribution gives the tightest
upper bound. At t = 0.5, the learning algorithm would be
symmetric with respect to Z1 and Z2. Therefore, the individual
sample mutual information-based upper bound equals KL
divergence-based upper bound using average join distribution.
Similarly, our total variation distance-based upper bound using
average joint distribution is equal to the individual sample total
variation distance-based upper bound at t = 0.5.

VI. CONCLUSION

We have introduced a new approach to obtain information-
theoretic bounds of the generalization error for supervised
learning problems. Our upper bounds based on Wasserstein
distance and total variation distance are tighter than coun-
terparts based on individual samples. Our approach could
also be combined with PAC-Bayesian upper bounds [29] and
conditional information techniques [17] to tighten the result,
which is left for future research.
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