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Adaptive sequential machine learning

Craig Wilson, Yuheng Bu, and Venugopal V. Veeravalli

ECE Department and Coordinated Science Laboratory, University of Illinois at Urbana–Champaign,
Urbana, Illinois, USA

ABSTRACT
A framework previously introduced in Wilson et al. (2018) for solving
a sequence of stochastic optimization problems with bounded
changes in the minimizers is extended and applied to machine learn-
ing problems such as regression and classification. The stochastic
optimization problems arising in these machine learning problems
are solved using algorithms such as stochastic gradient descent
(SGD). A method based on estimates of the change in the minimiz-
ers and properties of the optimization algorithm is introduced for
adaptively selecting the number of samples at each time step to
ensure that the excess risk—that is, the expected gap between the
loss achieved by the approximate minimizer produced by the opti-
mization algorithm and the exact minimizer—does not exceed a tar-
get level. A bound is developed to show that the estimate of the
change in the minimizers is non trivial provided that the excess risk
is small enough. Extensions relevant to the machine learning setting
are considered, including a cost-based approach to select the num-
ber of samples with a cost budget over a fixed horizon, and an
approach to applying cross-validation for model selection. Finally,
experiments with synthetic and real data are used to validate
the algorithms.
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1. Introduction

Consider solving a sequence of machine learning problems by minimizing the following
expected value of a fixed loss function ‘ðw, zÞ at each time n:

min
w2X

ffnðwÞ¢Ezn�pn ½‘ðw, znÞ�g, 8n � 1, (1.1)

where pn denotes the underlying (unknown) probabilistic model for the data zn at time
n and X is a closed and convex parameter space. For regression, zn ¼ fxn, yng corre-
sponds to the {predictors, response} pair at time n and w parameterizes the regression
model. For classification, zn ¼ fxn, yng corresponds to the {features, label} pair at time
n, and w parameterizes the classifier. Although motivated by regression and classifica-
tion, our framework works for any loss function ‘ðw, zÞ that satisfies certain properties
discussed in Section 2.1.
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We assume that problem (1.1) has a unique solution, denoted by w�
n at every instance

n; that is,

w�
n¢ arg min

w2X
fnðwÞ, 8n � 1: (1.2)

By imposing a condition on the minimizers w�
n of the function fnðwÞ, we assume that

these machine learning problems change at a bounded but unknown rate:

jjw�
n � w�

n�1jj � q, 8n � 2, (1.3)

where we use jj � jj to denote ‘2 norm and q is a finite upper bound on the change of
minimizers, which needs to be estimated in practice.
Under this model, we find approximate minimizers wn of each function fnðwÞ by

drawing Kn samples fznðkÞgKn
k¼1 �iid pn at time n. We do not make any assumptions about

the particular optimization algorithm that may be used to find the approximate mini-
mizers. As an example, we could use these samples in an optimization algorithm such
as stochastic gradient descent (SGD). We evaluate the quality of our approximate mini-
mizers wn through an excess risk criterion with level �; that is,

E½fnðwnÞ� � fnðw�
nÞ � �, (1.4)

which is a standard criterion for optimization and learning problems (see, e.g., Mohri
et al., 2012). Note that the expectation is taken over the randomness of the approximate
minimizers wn: Our goal is to determine adaptively the number of samples Kn required
to achieve a desired excess risk � for large enough n. Because q is unknown, we will
first construct an estimate of q. Given an estimate of q, we determine selection rules for
the number of samples Kn to achieve a target excess risk �.
This article is a continuation of the work initiated in Wilson et al. (2018). We special-

ize the results in Wilson et al. (2018), which were given for general functions fnðwÞ, to
the specific form in (1.1) and provide new results that are specifically relevant to
machine learning problems. We develop a bound to show that our estimate q is nontri-
vial provided that the excess risk is small enough. We also consider extensions relevant
to the machine learning setting, including a cost-based approach to select the number
of samples with a cost budget over a fixed horizon and an approach to applying cross-
validation for model selection. Some of the results in this paper have reported in confer-
ence publications (Wilson and Veeravalli, 2016a,b), which do not contain proofs of the
key results due to space limitations. Moreover, we provide substantially more detailed
numerical results and simulations in this article than those given in Wilson and
Veeravalli (2016a,b).

1.1. Related work

Our problem has connections with multitask learning (MTL) and transfer learning. In
MTL, one tries to learn several tasks simultaneously as in Agarwal et al. (2011),
Evgeniou and Pontil (2004), and Zhang and Yeung (2012) by exploiting the relation-
ships between the tasks. In transfer learning, knowledge from one source task is trans-
ferred to another target task either with or without additional training data for the
target task as in Pan and Yang (2010). For multitask and transfer learning, there are
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theoretical guarantees on regret for some algorithms (e.g., Agarwal et al., 2008). MTL
could be applied to our problem by running an MTL algorithm each time a new task
arrives, while remembering all prior tasks. However, this approach incurs a memory
and computational burden. Transfer learning lacks the sequential nature of
our problem.
We can also consider the concept drift problem in which we observe a stream of

incoming data that potentially changes over time, and the goal is to predict some prop-
erty of each piece of data as it arrives. After prediction, we incur a loss that is revealed
to us. For example, we could observe a feature xn and predict the label yn as in Towfic
et al. (2013). Some approaches for concept drift use iterative algorithms such as SGD
but without specific models on how the data changes. As a result, only simulation
results showing good performance are available.
Another related problem is online optimization, where generally no knowledge is

available about the incoming functions other than that all of the functions come from a
specified class of functions; that is, linear or convex functions with uniformly bounded
gradients. Online optimization models do not include the notion of a desired excess
risk bound. Rather, only bounds on the regret over some time horizon have been inves-
tigated, as in Cesa-Bianchi and Lugosi (2006), Duchi et al. (2011), Duchi and Singer
(2009), Hazan et al. (2007), Bartlett et al. (2007), Shalev-Shwartz and Kakade (2009),
Shalev-Shwartz and Singer (2006, 2007), Xiao (2010), and Zinkevich (2003), which is
different from the per time step excess risk guarantee provided in our work.
There has been some work on controlling the variation of the sequence of functions

fnðwÞ in (1.1) in Rakhlin and Sridharan (2012) and Chiang et al. (2012). The work in
Chiang et al. (2012) is most relevant where regret is minimized subject to a bound, say
Gb, on the total variation of the gradients over a time interval T of interest; that is,

XT
n¼1

max
w2X

jjrfnþ1ðwÞ � rfnðwÞjj2 � Gb: (1.5)

If all of the functions ffnðxÞg are strongly convex with the same parameter m (See
Assumption A.2 in Section 2.1 for the definition of strong convexity), then by the opti-
mality conditions (see theorem 2F.10 in Dontchev and Rockafellar, 2009) (1.5) implies
that

XT
n¼1

jjw�
nþ1 � w�

njj2 �
Gb

m2
:

Thus, the work in Chiang et al. (2012) can be seen as studying the regret with a con-
straint on the total variation in the minimizers over T time instants. In contrast, we
control the variation of the minimizers at each time instant with (1.3) and then seek to
maintain an excess risk criterion such as (1.4) at each time step.
Another relevant model is sequential supervised learning (see Dietterich, 2002) in

which we observe a stream of data consisting of feature/label pairs ðxn, ynÞ at time n,
with xn being the feature vector and yn being the label. At time n, we want to predict
yn given xn: One approach to this problem, studied in Fawcett and Provost (1997) and
Qian and Sejnowski (1988), is to look at L consecutive pairs fðxn�i, yn�iÞgLi¼1 and
develop a predictor at time n by applying a supervised learning algorithm to these
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training data. Another approach is to assume that there is an underlying hidden
Markov model governing the data as in Bengio and Frasconi (1996). The label yn repre-
sents the hidden state and the pair ðxn,�ynÞ represents the observation with �yn being a
noisy version of yn. Hidden Markov model inference techniques are used to estimate yn.
To summarize, none of the prior work discussed in this section involves adaptively

choosing the number of samples Kn at each time n to control the excess risk. Most
approaches instead focus on bounding the regret or provide no guarantees.

1.2. Article outline

The rest of this article is outlined as follows. In Section 2, we specialize the work in Wilson
et al. (2018) to the machine learning problems. We introduce a method from Wilson et al.
(2018) to estimate the unknown change q and establish the excess risk guarantees for the
sequence of learning problems in (1.1). In Section 3, we develop an upper bound on the
size of the overshoot of our estimate of q above the true value of q. In Section 4, we con-
sider a cost-based approach to select the number of samples based on the analysis in
Section 2, and a cross-validation approach. Finally, in Section 5, we apply our framework
to a variety of machine learning problems on both synthetic and real data.

2. Adaptive sequential optimization

We summarize our previous work in Wilson et al. (2018) and apply it to the machine
learning problem stated in (1.1).

2.1. Assumptions

We make several assumptions to proceed. First, let X be closed and convex with
diamðXÞ < þ1: Define the r-algebra

Fi¢r
�
fzjðkÞ : j ¼ 1, :::, i; k ¼ 1, :::,Kjg

�
, (2.1)

which is the smallest r-algebra such that the random variables in the set fzjðkÞ : j ¼
1, :::, i; k ¼ 1, :::,Kjg are measurable. By convention F0 is the trivial r-algebra.
We suppose that the following conditions hold:

A.1 For each n, fnðwÞ is twice continuously differentiable with respect to w.
A.2 For each n, fnðwÞ is strongly convex with a parameter m> 0; that is,

fnð~wÞ � fnðwÞ þ hrfnðwÞ, ~w � wi þ 1
2
mjj~w � wjj2, (2.2)

where hw, ~wi is the Euclidean inner product between w, ~w 2 X:

A.3 For each n, we can draw stochastic gradients rw‘ðw, znðkÞÞ, where fznðkÞgKn
k¼1�iidpn and

E rw‘
�
w, znðkÞ

�� �
¼ rfnðwÞ: (2.3)
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A.4 Given an optimization algorithm that generates an approximate minimizer

wn¢Aðwn�1, fznðkÞgKn
k¼1Þ (2.4)

using Kn samples fznðkÞgKn
k¼1, there exists a function bðd0,KnÞ such that the follow-

ing conditions hold:

1. If Kn and d0 are both Fn�1-measurable random variables, it holds that

jjwn�1 � w�
njj2 � d20 ) E fnðwnÞjFn�1

� �� fnðw�
nÞ � bðd0,KnÞ: (2.5)

2. The bound bðd0,KnÞ is non-decreasing in d0 and non-increasing in Kn.

A.5 Initial approximate minimizers w1 and w2 satisfy

fiðwiÞ � fiðw�
i Þ � �i, i ¼ 1, 2

with �1 and �2 known.

We note that Assumption A.3 guarantees that the gradients used in the optimization algo-
rithm are unbiased. In addition, we assume that the bound bðd0,KnÞ depends on the number
of samples Kn and not the number of iterations in Assumption A.4. For the basic version of
SGD, generally the number of iterations equals Kn, because each sample is used to produce a
noisy gradient. See Wilson et al. (2018) for a thorough discussion of useful bðd0,KnÞ bounds.
For some bðd0,KÞ, we may need to know parameters such as the strong convexity parameter.
Estimating these parameters is also discussed in Wilson et al. (2018). Finally, for Assumption
A.5, we can fix Ki and set �i ¼ bðdiamðXÞ,KiÞ for i¼ 1, 2 at initialization.

2.2. Change in minimizers known

Following Wilson et al. (2018), we examine the case when the change in minimizers q
is known. Suppose that �n�1 bounds the excess risk at time n – 1. Using the triangle
inequality, strong convexity, Jensen’s inequality, and (1.3), we have

Ejjwn�1 � w�
njj2 �

ffiffiffiffiffiffiffiffiffiffiffi
2�n�1

m

r
þ q

 !2

: (2.6)

Now, by using the bound bðd0,KnÞ from Assumption A.4, we set

�n ¼ b

ffiffiffiffiffiffiffiffiffiffiffi
2�n�1

m

r
þ q,Kn

 !
, 8n � 3, (2.7)

yielding a sequence of bounds on the excess risk. Note that this recursion only relies on
the immediate past at time n – 1 through �n�1: To achieve �n � � for all n, we set

K1 ¼ min K � 1
			 b�diamðXÞ,K

�
� �


 �

and Kn ¼ K� for n � 2, with

K� ¼ min K � 1

				 b
ffiffiffiffiffi
2�
m

r
þ q,K

 !
� �

( )
: (2.8)
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In comparison, if we did not exploit the fact that the change is bounded by q, we would
use the estimate diam2ðXÞ to bound Ejjwn�1 � w�

njj2 and select Kn. If the bound in
(2.6) is smaller than diam2ðXÞ, then we would need significantly fewer samples Kn to
guarantee a desired excess risk.

2.3. K� may be too large

In this section, we look at a case where K� can be too large. Suppose that q¼ 0, so the
problems are not changing. In this case, we only need to take training samples at the
first time instant and then we can stop taking samples; that is, K1 > 0 and Kn ¼ 0
for n> 1.
Suppose that �1 � � and q¼ 0. In this case, from the analysis in the previous section,

we pick

K� ¼ min K � 1

				 b
ffiffiffiffiffi
2�
m

r
þ q,K

 !
� �

( )
:

This implies that K� > 0: However, by picking Kn ¼ 0 for all n � 2, we could achieve
�n ¼ �1 � � for all n � 2: This shows that the choice of K� is conservative and can be
too large if the initial distance d0 ¼ 0:
For an algorithm like SGD, the bound bðd0,KÞ is roughly of the form (see Wilson

et al., 2018):

bðd0,KÞ 	 1
K
þ d20
K2

:

The first term captures the asymptotic behavior of SGD and the second term accounts
for the initial distance d0. As a general rule, the choice of K� is useful if the term that
depends on the initial distance, d20=K

2, is comparable to the asymptotic term, 1=K, in
the bðd0,KÞ bound.

2.4. Estimating the change in the minimizers

In practice, we do not know q, so we must construct an estimate q̂n using the
samples fznðkÞgKn

k¼1 from each distribution pn. We introduce an approach to estimate
the one–time step change, jjw�

i � w�
i�1jj and a method to combine these estimates to

produce an overall estimate of q. These estimates are from Wilson et al. (2018). For
appropriately chosen sequences ftng and for all n large enough, we have q̂n þ tn � q
almost surely. With this property, analysis similar to that in Section 2.2 holds, which is
provided in Section 2.5.

2.4.1. Estimating one-step change
First, we develop an estimate ~qi of the one-step changes jjw�

i � w�
i�1jj using a method

from Wilson et al. (2018). Implicitly, we assume that all one-step estimates are bounded
by diamðXÞ, because trivially jjw�

n � w�
n�1jj � diamðXÞ:
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Using the triangle inequality and variational inequalities from Dontchev and
Rockafellar (2009) yields

jjw�
i � w�

i�1jj � jjwi � wi�1jj þ jjwi � w�
i jj þ jjwi�1 � w�

i�1jj
� jjwi � wi�1jj þ 1

m
jjrfiðwiÞjj þ 1

m
jjrfiðwi�1Þjj:

We then approximate jjrfiðwiÞjj ¼ jjEzi�pi ½rw‘ðwi, ziÞ�jj by a sample average approxi-
mation to yield the following estimate called the direct estimate:

~qi¢jjwi � wi�1jj þ 1
m
jjĜijj þ 1

m
jjĜi�1jj, (2.9)

where

Ĝi¢
1
Ki

XKi

k¼1

rw‘ðwi, ziðkÞÞ:

2.4.2. Combining one-step estimates for bounded change
It may seem natural to combine the one-step estimates using

q̂n ¼ maxf~q2, :::, ~qng:
This method has a serious drawback. Because f~qig are random variables, if we combine
them by taking their maximum, any particular one-step estimate ~qi that is large will
pull up the overall estimate q̂n: This would drive q̂n ! diamðXÞ, as n ! 1, resulting
in a q̂n that is trivial in the limit of large n.
We introduce an estimate from Wilson et al. (2018) that overcomes this defect. We

need the following assumptions:

B.1 We have estimates ĥW : RW ! R that are nondecreasing in their arguments such
that

E ĥWðqj, :::, qj�Wþ1Þ
h i

� q,

where qi¢jjw�
i � w�

i�1jj:
B.2 There exists absolute constants fbigWi¼1 for any fixed W such that 8p, q 2 R

W
�0,

jĥWðp1, :::, pWÞ � ĥWðq1, :::, qWÞj �
XW
i¼1

bijpi � qij:

For example, if qi �iid Unif ½0, q�, then

ĥWðqi, qiþ1, :::, qiþW�1Þ ¼
W þ 1
W

maxfqi, qiþ1, :::, qiþW�1g

is an estimator of q satisfied the required assumptions.
Given an estimator satisfying all of the assumptions, we let

~qðiÞ¢ĥWð~qi, ~qi�1, :::, ~qi�Wþ1Þ
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and set

q̂n ¼
1

n� 1

Xn
i¼2

~qðiÞ ¼ 1
n� 1

Xn
i¼2

ĥminfW, i�1gð~qi, ~qi�1, :::, ~qmaxfi�Wþ1, 2gÞ: (2.10)

As shown in Wilson et al. (2018, theorem 2), the above estimator q̂n eventually upper
bounds q; that is, for appropriately chosen sequences ftng and for all n large enough,
q̂n þ tn � q holds almost surely. See Wilson et al. (2018) for a detailed discussion of the
expression of tn.

2.5. Tracking analysis with change in minimizers unknown

We now present an extension of the results in Section 2.2, obtained by replacing q with
its estimate given in Section 2.4. Our analysis depends on the following crucial
assumptions:

C.1 For appropriate sequences ftng, for all n sufficiently large it holds that q̂n þ tn � q
almost surely.

C.2 bðd0,KnÞ factors as bðd0,KnÞ ¼ aðKnÞd20 þ bðKnÞ:

We have demonstrated that Assumption C.1 holds for the direct estimator q̂n: We start
with a general result showing that for appropriate choices of Kn, we can control the
excess risk.

Theorem 2.1 (Wilson et al., 2018, theorem 3). Under Assumptions C.1–C.2, with Kn � K�

for all n large enough, where K� is defined in (2.8), we have

lim sup
n!1

�
E fnðwnÞ
� �� fnðw�

nÞ
�
� � (2.11)

almost surely.
This theorem shows that for any choice of samples Kn such that Kn � K� holds, it

follows that the excess risk can be controlled in the sense of (2.11).
To establish tracking analysis for the case where q is unknown, we can set

Kn ¼ min K � 1

					 b
ffiffiffiffiffi
2�
m

r
þ ðq̂n�1 þ tn�1Þ

 !2

,K

0
@

1
A � �

8<
:

9=
;, n � 3: (2.12)

This is the same form as the choice in (2.8) with q̂n�1 þ tn�1 in place of q. Due to
Assumption C.1, for all n large enough it holds that q̂n þ tn � q almost surely. Then
by the monotonicity assumption in A.1, for all n large enough we pick Kn � K�

almost surely. We can therefore apply Theorem 2.1 and establish the excess
risk guarantee.

3. Bound on q-estimate overshoot

Because we assume that the solution space X has bounded diameter, we always have
the trivial bound
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jjw�
n � w�

n�1jj � diamðXÞ:
An estimate of the change in minimizers q̂n, is only interesting if the bound is nontri-
vial; that is, q̂n < diamðXÞ when q < diamðXÞ: In prior work (Wilson et al., 2018), we
have proved that for sufficiently large n, q̂n þ tn � q almost surely. In this section, we
look at proving an upper bound on how much q̂n can overshoot q to show that this
estimate is nontrivial.
When we proved that q̂n eventually upper bounds q, we did not use the fact that the

points wn at which we are evaluating the one-step estimates are approximate minimiz-
ers. In particular, that proof would still hold even if we selected the wn randomly from
the solution space X without using the samples fznðkÞgKn

k¼1 at all. In contrast, control-
ling the overshoot depends critically on the fact that the points at which we evaluate
the one-step estimates are approximate minimizers. The solution quality of the approxi-
mate minimizers measured by � in (1.4) will control the size of the overshoot, as seen
in Theorem 3.1.
To proceed with our analysis, suppose that the following conditions hold:

D.1 There exist constants CðKiÞ such that for all i, it holds that

E½jjwi � ~w ijj2jFi�1� � C2ðKiÞ: (3.1)

D.2 The loss function fnðwÞ has Lipschitz continuous gradients with parameter M; that is,

fnðwÞ � fnð~wÞ þ hrfnð~wÞ, ~w � wi þ 1
2
Mjj~w � wjj2, 8w, ~w 2 X: (3.2)

D.3 It holds that

E½jjrw‘ðw, ziÞ � rfiðwÞjj2jFi�1� � r2, 8w 2 X: (3.3)

Assumption D.1 is a bound on the difference in how far apart two independent outputs
of the optimization algorithm wi and ~w i starting from wi�1 are. Due to the bound in
Assumption A.4, we can always have the following choice of C(Ki):

E½jjwi � ~w ijj2jFi�1� � 2E½jjwi � w�
i jj2jFi�1� þ 2E½jj~w i � w�

i jj2jFi�1�
� 4

m
bðdiamðXÞ,KiÞ ¼ C2ðKiÞ:

By a more sophisticated analysis, specific to the particular chosen optimization algo-
rithm, it is possible to get tighter C(Ki) bounds. Assumption D.2 imposes the Lipschitz
gradient assumption on the loss function. For Assumption D.3, because E½rw‘ðw, ziÞ� ¼
rfiðwÞ, it controls the variance of the stochastic gradients.

Theorem 3.1. Suppose that all of the previously mentioned assumptions hold, and we
suppose that:

1. The sequence of excess risks achieved, ei, i ¼ 1, 2, :::, satisfies

lim sup
n!1

en � �: (3.4)

2. For all i large enough, we have that Ki � ~K for a constant ~K :
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Then it follows that

lim sup
n!1

E q̂n½ � � qþ 4
ffiffiffi
2

p
M�1=2

m3=2
þ G, (3.5)

where

G¢
4M
m

Cð~KÞ þ 2
m

r~Kð Þ1=2: (3.6)

Proof. First, we look at the one-step estimates. It holds that

~qi � qi ¼ jjwi � wi�1jj � jjw�
i � w�

i�1jj þ
1
m
jjĜijj þ 1

m
jjĜi�1jj

� jjjwi � wi�1jj � jjw�
i � w�

i�1jjj þ
1
m
jjĜijj þ 1

m
jjĜi�1jj

� 1
m
jjrfiðwiÞjj þ 1

m
jjrfi�1ðwi�1Þjj þ 1

m
jjĜijj þ 1

m
jjĜi�1jj

� 2
m
jjrfiðwiÞjj þ 2

m
jjrfi�1ðwi�1Þjj þ 1

m
jjrfiðwiÞ � Ĝijj þ 1

m
jjrfi�1ðwi�1Þ � Ĝi�1jj:

By the Lipschitz gradient Assumption D.2, we have

jjrfiðwÞjj � Mjjw � w�
i jj:

Then it follows by strong convexity in Assumption A.2 that

jjw � w�
i jj �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m
ðfiðwÞ � fiðw�

i ÞÞ
r

,

and therefore we have

jjrfiðwÞjj �
ffiffiffi
2

p
Mffiffiffiffi
m

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
fiðwÞ � fiðw�

i Þ
q

:

Because the square root is concave, by Jensen’s inequality we have

E jjrfiðwiÞjj
� � � ffiffiffi

2
p

Me1=2i

m1=2
:

This in turn implies that

E ~qi½ � � qi �
2
ffiffiffi
2

p
Me1=2i

m3=2
þ 2

ffiffiffi
2

p
Me1=2i�1

m3=2
þ 1
m
EjjrfiðwiÞ � Ĝijj þ 1

m
Ejjrfi�1ðwi�1Þ � Ĝi�1jj:

Next, we look at bounding EjjrfiðwiÞ � Ĝijj: For ~w i 2 X, denote

~Gi¢
1
Ki

XKi

k¼1

rw‘ð~w i, ziðkÞÞ:

Then we have

jjrfiðwiÞ � Ĝijj � jjĜi � ~Gijj þ jj~Gi �rfið~w iÞjj þ jjrfið~w iÞ � rfiðwiÞjj
� jjĜi � ~Gijj þ jj~Gi �rfið~w iÞjj þMjj~w i � wijj:
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Using the direct estimate lower bound analysis from Wilson et al. (2018) it follows that

E½jjrfiðwiÞ � ĜijjjFi�1� � MCðKiÞ þ r
Ki

� 1=2

þMCðKiÞ: (3.7)

This shows that

E ~qi½ � � qi �
2
ffiffiffi
2

p
Me1=2i

m3=2
þ 2

ffiffiffi
2

p
Me1=2i�1

m3=2
þ E

2M
m

CðKiÞ þ 1
m

r
Ki

� 1=2
" #

þ E
2M
m

CðKi�1Þ þ 1
m

r
Ki�1

� 1=2
" #

:

(3.8)

Then, plugging in the definition of q̂n it follows that

limsup
n!1

E q̂n½ � � qþ 4
ffiffiffi
2

p
M�1=2

m3=2
þ 4M

m
Cð~KÞ þ 2

m
r~Kð Þ1=2

¼ qþ 4
ffiffiffi
2

p
M�1=2

m3=2
þ G:

(3.9)

w

This shows that the direct estimate is a nontrivial upper bound for sufficiently small �.
Note that, in practice, the ~K will be a function of �, because we can pick ~K ¼ K� with
K� defined in (2.8). Note that K� is itself a function of �. This means that the G term in
(3.9), which is a function of ~K is also a function of �. Thus, the entire overshoot term is
a function of � and, in fact, by inspection, it goes to zero as � ! 0 if K� ! 1 as � ! 0
(as K� defined in 2.8 does).

4. Extensions relevant to machine learning applications

4.1. Cost approach

A natural way to assess the usefulness of our approach is to choose a number of sam-

ples fKngTn¼1 over a horizon of length T using the choice in (2.12), and compare against

taking
PT

n¼1 Kn samples at time n¼ 1 and no samples at the other T – 1 time instants.
See Section 5 for such a comparison.
In this section, we consider a different type of comparison based on assuming that

there is a cost pðKnÞ of taking Kn samples. For example, we could have

pðKÞ ¼ P01fK>0g þ P1K: (4.1)

This implies that we pay a fixed cost of P0 any time we take at least one sample and a
marginal cost of P1 per sample. We want to control the excess risk by deciding when to
take samples, and how many samples to take with a total budget P over a horizon of
length T; that is,

XT
n¼1

pðKnÞ � P: (4.2)

For the option of taking all samples up front:
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Kn ¼
maxfK � 1jpðKÞ � Pg, n ¼ 1

0, 2 � n � T:

(
(4.3)

Another option is to sample every DT time instants and divide the cost budget evenly
over the times that we take samples using

Kn ¼ max K � 1jpðKÞ �
�

P
T=DT

�( )
, if DT divides ðn� 1Þ

0, else:

8>><
>>: (4.4)

For analysis, we need Assumption C.1 and the following additional assumptions:

E.1 There exists a function b0ðjjw � w�
njj2Þ such that

fnðwÞ � fnðw�
nÞ � b0ðjjw � w�

njj2Þ: (4.5)

For example, suppose that the functions fnðwÞ have Lipschitz continuous gradients with
modulus M and w�

n 2 intðXÞ for all n � 1, where intðXÞ is the interior of X: By the
descent lemma given in Bertsekas (1999), we have

fnðwnÞ � fnðw�
nÞ � hrfnðw�

nÞ,wn � w�
ni þ

1
2
Mjjwn � w�

njj2

¼ 1
2
Mjjwn � w�

njj2:

Thus, we can set

b0ðjjwn � w�
njjÞ ¼

1
2
Mjjwn � w�

njj2:

Because we need to consider the possibility that Kn ¼ 0 for some n in f1, :::,Tg but still
provide estimates of the excess risk, we need an alternate version of the bound in (2.5).
Define

tsðnÞ¢maxfmj1 � m � nandKm > 0g, (4.6)

where tsðnÞ is the last time no later than n at which samples were taken. If no samples
have been taken so far, then by convention tsðnÞ ¼ þ1: We construct the recursively
defined function ~bnðq,KnÞ by considering the following four cases:

1. No samples have been taken by time n:

~bnðq,KnÞ¢b0ðdiamðXÞÞ:
2. Samples taken at time n for the first time:

~bnðq,KnÞ¢bðdiamðXÞ,KnÞ:
3. No samples taken at time n but samples have been taken previously:

~bnðq,KnÞ¢e

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
m
~btsðn�1Þ

r
þ
�
ðn� tsðn� 1ÞÞq

� !
:
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4. Samples taken at time n and samples have been taken previously:

~bnðq,KnÞ¢b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4
m
~btsðn�1Þ þ 2

�
ðn� tsðn� 1ÞÞq

�2r
,Kn

 !
,

where ~btsðn�1Þ is the bound on the excess risk at time tsðn� 1Þ:
Suppose that over a time horizon of length T we have a total cost budget P with respect
to the number of samples fKngTn¼1 as in (4.2). Define the excess risk gaps

nn¢
�
~bnðq,KnÞ � �

�
þ

(4.7)

with ðxÞþ ¼ maxfx, 0g: The variable nn is the extent to which the target excess risk of �
is violated upwards. If our excess risk is below our target level �, then we set nn ¼ 0:
Our goal is to minimize the size of the nn, while taking into account the cost constraint
in (4.2). To control the size of nn, suppose that we have a function / : RT ! R that
describes the cumulative loss of the excess risk gaps n1, :::, nT :
We now provide some possible choices for /ðn1, :::, nTÞ :

/ðn1, :::, nTÞ ¼
1
T

XT
n¼1

nt, (4.8)

/ðn1, :::, nTÞ ¼ maxfn1, :::, nTg, (4.9)

/ðn1, :::, nTÞ ¼ max
ða, bÞ2s

Xb
n¼a

nn, (4.10)

with

s ¼ fða, bÞja < b, na � naþ1 � � � � � nbg:
The choices given in (4.8) and (4.9) penalize the average and maximum excess risk gaps
respectively. In practice, with these choices, we will stop taking samples before the hori-
zon T resulting in relatively poor performance toward the end of the horizon. The third
choice gets around this problem by penalizing large increasing runs of excess risk gaps,
and tends to favor a more uniform choice of the number of samples Kn.
We first consider the case when q is known to us and plan over the horizon of length

T by solving the following optimization problem:

minimize
K1, :::,KT

/ðn1, :::, nTÞ

subject to
XT
n¼1

pðq,KnÞ � P

1fK1>0g � 1fK2>0g
1fKn>0g � 1fKn�1>0g þ 1fKnþ1>0g n ¼ 2, :::,T � 1

1fKT�1>0g � 1fKT>0g
Kn 2 Z�0 n ¼ 1, :::,T:

(4.11)

The idea of this problem is to satisfy the excess risk bound � with minimal viola-
tion /ðn1, :::, nTÞ:
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To estimate q, we need samples from consecutive time instants. Therefore, we impose
the constraint that if we take samples at time n, then we must take samples at either
time n – 1 or time nþ 1 through the constraint

1fKn>0g � 1fKn�1>0g þ 1fKnþ1>0g:

The problem in (4.11) is a mixed integer non-linear programming problem (MINLP).
There are no general methods to efficiently solve this MINLP, and we therefore con-
sider a relaxation of this problem later.
In the case that we know q, we can plan the number of samples ahead of time before any

samples have been taken. When q is unknown, we cannot plan over the entire horizon.
Instead, at each time instant m we have to plan over the remaining time horizon of length T �
mþ 1, while using the estimate q̂m�1 þ tm�1 in place of q and the remaining cost budget

P �
Xm�1

n¼1

pðKnÞ:

We then consider the cost-to-go problem

minimize
Km, :::,KT

/ðnm, :::, nTÞ

subject to
XT
n¼m

pðKnÞ � P �
Xm�1

n¼1

pðKnÞ

1fKm>0g � 1fKmþ1>0g
1fKm>0g � 1fKm�1>0g þ 1fKmþ1>0g n ¼ mþ 1, :::,T � 1

1fKT�1>0g � 1fKT>0g
Kn 2 Z�0 n ¼ m, :::,T:

(4.12)

This is the same form as (4.11), except that it is over the time horizon from n ¼
m, :::,T, taking into account the portion of the cost budget that has been expended. In
this problem, we only optimize over Km, :::,KT : This problem is again an MINLP.
Next, we look at approximate solutions to (4.11) and (4.12). The major difficulties in solving

these programs are that the decision variables fKngTn¼1 are integer valued and the cost func-
tion p(K) may be discontinuous at zero due to fixed costs. We consider relaxing Kn to be real
valued and introduce a piecewise approximation p̂ðKÞ of the cost functions p(K):

p̂ðKÞ ¼ pðK0ÞK
K0

� 
1fK�K0g þ pðKÞ 1fK>K0g:

Generally, we pick 0 < K0 < 1: We consider the relaxed program

minimize
K1, :::,KT

/ðn1, :::, nTÞ

subject to
XT
n¼1

p̂ðq,KnÞ � P

K1 � K2

Kn � Kn�1 þ Knþ1 n ¼ 2, :::,T � 1

KT�1 � KT

Kn 2 R�0 n ¼ 1, :::,T:

(4.13)
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We also relax the indicator constraints to inequality to encourage taking samples at con-
secutive times. In practice, this forces more gradual changes in samples Kn and makes it
easier to solve these problems. This problem can be readily solved by gradient-based solv-
ers such as the Interior Point Optimizer (IPOPT) in W€achter and Biegler (2006).
When q is unknown, we can repeatedly solve this problem using the latest estimate

of q by solving the following sequence of problems:

minimize
Knþ1, :::,KT

/ðn1, :::, nTÞ

subject to
Xn
i¼1

p̂ðq̂i,KiÞ � P �
XT
i¼nþ1

p̂ðq̂i�1,KiÞ

K1 � K2

Kn � Kn�1 þ Knþ1 n ¼ 2, :::,T � 1

KT�1 � KT

Kn 2 R�0 n ¼ 1, :::,T:

(4.14)

4.2. Cross-validation

We can also apply cross-validation for model selection. Suppose we have loss functions
‘kðw, zÞ parameterized by k, which controls the model complexity. For example, we
could have a quadratic penalty term

‘kðw, zÞ ¼ ~‘ðw, zÞ þ 1
2
kjjwjj2: (4.15)

The value of k¼ 0 corresponds to the true loss function that we want to minimize.
Suppose that we have C different values kð1Þ, kð2Þ, :::, kðCÞ of k under consideration. For
each kðiÞ, we generate an approximate minimizer wðiÞ

n of

Ezn�pn ½‘kðiÞ ðw, znÞ�: (4.16)

We want to select the value kðiÞ and corresponding wðiÞ
n that achieves the smallest loss

Ezn�pn ½‘0ðwðiÞ
n , znÞ�: (4.17)

We generate an approximate minimizer wðiÞ
n for each problem in (4.16) starting from

wðiÞ
n�1: To select the best choice of kði

�Þ in terms of minimizing (4.17), we apply cross-
validation and set wn ¼ wði�Þ

n (see Hastie et al., 2001).
The idea behind cross-validation is to divide the training samples fznðkÞ�gKn

k¼1 into P
equal-sized pieces. For every P – 1 out of P pieces, we use the P – 1 pieces of the train-
ing set to generate an approximate solution ~wðiÞ

n to (4.16). We use the remaining piece
of the training set to evaluate the empirical test loss achieved by ~wðiÞ

n using a sample
average approximation. We do this for every possible choice of P – 1 out of P pieces
and average the empirical test loss estimates. We then select the value kði

�Þ that achieves
the smallest empirical test loss.
To apply cross-validation to our framework, we run C parallel versions of our

approach and at time n we generate C different choices for the number of samples KðiÞ
n :

We then choose

SEQUENTIAL ANALYSIS 559



Kn ¼ maxfKð1Þ
n , :::,KðCÞ

n g:
After choosing Kn, we apply the usual cross-validation approach to select kðiÞ for time
n. Figure 1 shows this approach for two values of k.

5. Experiments

We provide two regression examples for synthetic and real data as well as a classifica-
tion example for synthetic data. For the synthetic regression problem, we can explicitly
compute q and w�

n and exactly evaluate the performance of our method. It is straight-
forward to check that all requirements in A.1–A.5 are satisfied for the problems consid-
ered in this section. We apply the “do not update past excess risk” choice of Kn here.

5.1. Synthetic regression

Consider a regression problem with synthetic data using the penalized quadratic loss

‘ðw, zÞ ¼ 1
2
ðy� x>wÞ2 þ 1

2
kjjwjj2

with z ¼ ðx, yÞ 2 R
3: We further assume that

zn � N 0,
r2xI rxn, yn
r>xn, yn r2yn

" # !
:

Under these assumptions, we can analytically compute minimizers w�
n of fnðwÞ ¼

Ezn�pn ½‘ðw, znÞ�: We change only rxn, yn and r2yn appropriately to ensure that jjw�
n �

w�
n�1jj ¼ q holds for all n. We find approximate minimizers using SGD with k¼ 0. We

estimate q using the direct estimate.

Figure 1. Cross-validation approach.
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We let n range from 1 to 25 with q¼ 1, a target excess risk � ¼ 0:1, and Kn from
(2.12). We average over 20 runs of our algorithm. Figure 2 shows q̂n, our estimate of
q, which is above q in general. Figure 3 shows the number of samples Kn, which settles
down as the estimate of q converges. We can exactly compute fnðwnÞ � fnðw�

nÞ and thus,
by averaging over the 20 runs of our algorithm, we can estimate the excess risk
(denoted “sample average estimate”). We cover the time horizon from n¼ 1 to 25 to
yield the sample average estimate excess risk given by 2:797
 10�261:071
 10�2:

Therefore, we see that we achieve our desired excess risk.

5.1.1. Cost approach
We consider applying the cost approach in Section 4.1 to the synthetic regression prob-
lem with the cost in (4.1). We compare the optimal cost approach introduced in (4.13)
of Section 4.1 to the approach in (2.12), taking all samples at time n¼ 1 as in (4.3) and
taking samples every five time instants as in (4.4). Note that the method from (2.12)
does not satisfy the cost budget. Figure 4 shows the test loss of these approaches. We
achieve test loss similar to the method in (2.12) and better than the other two methods.
Figure 5 shows the number of samples selected for both methods. At some time
instants, our optimal cost approach does not take samples.

5.2. Synthetic classification

Consider a binary classification problem using

‘ðw, zÞ ¼ 1
2
ð1� yðx>wÞÞ2þ þ 1

2
kjjwjj2

with z ¼ ðx, yÞ 2 R
d 
 R and ðyÞþ ¼ maxfy, 0g: This is a smoothed version of the

hinge loss used in support vector machines Hastie et al., 2001). We suppose that at
time n, the two classes have features drawn from a Gaussian distribution with covari-
ance matrix r2I but different means lð1Þn and lð2Þn ; that is,

Figure 2. q Estimate for synthetic regression.
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xnjfyn ¼ ig � NðlðiÞn , r2IÞ:
The class means move slowly over uniformly spaced points on a unit sphere in R

d as in Figure
6 to ensure that the constant Euclidean norm condition jjw�

n � w�
n�1jj ¼ q holds. We find

approximate minimizers using SGD with k ¼ 0:1:We estimate q using the direct estimate.
We let n range from 1 to 25 and target an excess risk � ¼ 0:1: We average over 20

runs of our algorithm. As a comparison, if our algorithm takes fKng25n¼1 samples, then
we consider taking

P25
n¼1 Kn samples up front at n¼ 1. This is what we would do if we

assumed that our problem is not time varying. Figure 7 shows q̂n, our estimate of q.
Figure 8 shows the average test loss for both sampling strategies. To compute the test
loss we draw Tn additional samples fztestn ðkÞgTn

k¼1 from pn and compute
1
Tn

PTn
k¼1 ‘ðwn, ztestn ðkÞÞ: We see that our approach achieves substantially smaller test loss

than taking all samples up front. We do not draw the error bars on this plot because it
makes it difficult to see the actual losses achieved.

Figure 3. Kn for synthetic regression.

Figure 4. Test loss for synthetic regression with cost approach.
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To further evaluate our approach, we look at the receiver operating characteristic
(ROC) of our classifiers. The ROC is a plot of the probability of a true positive against
the probability of a false positive. The area under the curve (AUC) of the ROC equals
the probability that a randomly chosen positive instance (y¼ 1) will be rated higher
than a negative instance (y ¼ – 1) Fawcett, 2006). Thus, a large AUC is desirable.
Figure 9 plots the AUC of our approach against taking all samples up front. Our sam-
pling approach achieve a substantially larger AUC.

5.3. Panel study on income dynamics–regression

The Panel Study of Income Dynamics surveyed individuals every year to gather demo-
graphic and income data annually from 1974 to 2012 (Brown et al., 2015). We want to
predict an individual’s annual income (y) from several demographic features (x),

Figure 5. Kn for synthetic regression with cost approach.

Figure 6. Evolution of class means.
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Figure 7. Estimate of q for synthetic classification.

Figure 8. Test loss for synthetic classification.

Figure 9. Area under the curve for synthetic classification.

564 C. WILSON ET AL.



including age, education, work experience, etc., chosen based on previous economic
studies in Murphy and Welch (1990).
The idea of this problem conceptually is to rerun the survey process and determine

how many samples we would need if we wanted to solve this regression problem to
within a desired excess risk criterion �.
We use the same loss function, direct estimate for q, and minimization algorithm as

the synthetic regression problem. We average over 20 runs of our algorithm by resam-
pling without replacement (see Hastie et al., 2001). For the sake of comparison, given a
choice of samples fKngTn¼1 produced by our approach, we compare against takingPT

n¼1 Kn samples at time n¼ 1 and none afterwards. Note that this is what we would
do if we believed that the regression model does not change over time. We are aware of

Figure 10. Number of samples Kn in Panel Study on Income Dynamics regression problem.

Figure 11. Estimate of q in Panel Study on Income Dynamics regression problem.

SEQUENTIAL ANALYSIS 565



no other methods to select the number of samples Kn to control the excess risk against
which we could compare our approach.
Figure 10 shows the number of samples Kn, which settles down quickly. Figure 11

shows q̂n: Figure 12 shows the test losses over time evaluated over 20% of the available
samples. The test loss for our approach is substantially less than that obtained by taking
the same number of samples up front.

6. Conclusion

We introduced a framework for adaptively solving a sequence of learning problems. We
developed estimates of the change in the minimizers used to determine the number of
training samples Kn needed to achieve a target excess risk �. We introduced a cost-based
approach to select the number of samples and an approach to apply cross-validation.
Experiments with synthetic and real data demonstrate that this approach is effective.
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