
IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020 121

Tightening Mutual Information-Based Bounds
on Generalization Error
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Abstract—An information-theoretic upper bound on the gen-
eralization error of supervised learning algorithms is derived.
The bound is constructed in terms of the mutual information
between each individual training sample and the output of the
learning algorithm. The bound is derived under more general
conditions on the loss function than in existing studies; neverthe-
less, it provides a tighter characterization of the generalization
error. Examples of learning algorithms are provided to demon-
strate the tightness of the bound, and to show that it has a
broad range of applicability. Application to noisy and iterative
algorithms, e.g., stochastic gradient Langevin dynamics (SGLD),
is also studied, where the constructed bound provides a tighter
characterization of the generalization error than existing results.
Finally, it is demonstrated that, unlike existing bounds, which
are difficult to compute and evaluate empirically, the proposed
bound can be estimated easily in practice.

Index Terms—Cumulant generating function, generalization
error, information-theoretic bounds, stochastic gradient Langevin
dynamics.

I. INTRODUCTION

RECENT success of deep learning algorithms [2] has
dramatically boosted their applications in various engi-

neering and science domains, e.g., computer vision [3], natural
language processing [4], autonomous driving [5], and health
care [6]. A deep neural network trained using a sufficiently
large amount of training data can achieve a small training
error, while simultaneously performing well on unseen data,
i.e., it generalizes well. However, we have yet to develop a
satisfactory understanding of why deep learning algorithms
generalize well.
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Classical statistical learning approaches for analyzing the
generalization capability of supervised learning algorithms can
be mainly categorized into two groups. The first set of meth-
ods are based on measures of the complexity of the output
hypothesis space, e.g., VC dimension and Rademacher com-
plexity [7], [8]. However, these complexity measures usually
scale exponentially with the depth of deep neural networks [9].
Moreover, these approaches do not take into consideration
the regularization implicitly imposed by the algorithms used
to train the neural networks, e.g., stochastic gradient descent
[10], [11]. Thus, the generalization error bounds based on
these complexity measures tend to be loose and do not explain
why deep neural networks generalize well in practice. The sec-
ond set of methods are based on exploiting properties of the
learning algorithm, e.g., PAC-Bayesian bounds [12], uniform
stability [13], [14], and compression bounds [15]. However,
as discussed in [11], [16], these approaches do not exploit
the fact that the generalization error depends strongly on the
underlying true data-generating distribution. For example, if
the labels are irrelevant to the input features, then the gener-
alization error will be large for a deep neural network, since
training error is usually small due to the large capacity of the
network, but test error will be large due to the fact that there is
no relationship between the input features and the label [11].

Recently, it was proposed in [17] and further studied in [18]
and [19] that the metric of mutual information can be used to
develop upper bounds on the generalization error of learn-
ing algorithms. Such an information-theoretic framework can
handle a broader range of problems, and it could also address
the aforementioned challenges of implicit regularization and
dependence on data generating distribution. More importantly,
it offers an information-theoretic point of view on how to
improve the generalization capability of a learning algo-
rithm, and this new perspective provides us with a better
understanding of the generalization behavior of deep neural
networks.

In this paper, we follow the information-theoretic framework
proposed in [17]–[19]. Our main contribution is a tighter upper
bound on the generalization error using the mutual information
between an individual training sample and the output hypoth-
esis of the learning algorithm. We show that compared to
existing studies, our bound has a broader range of applicability,
and can be considerably tighter.

We consider an instance space Z , a hypothesis space W ,
and a nonnegative loss function � : W × Z → R

+. A train-
ing dataset S = {Z1, . . . ,Zn} that consists of n i.i.d samples
Zi ∈ Z drawn from an unknown distribution μ is available.
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The goal of a supervised learning algorithm is to find an output
hypothesis w ∈ W that minimizes the population risk:

Lμ(w) � EZ∼μ[�(w,Z)]. (1)

In practice, μ is unknown, and thus Lμ(w) cannot be computed
directly. Instead, the empirical risk of w on a training dataset
S is studied, which is defined as

LS(w) �
1

n

n∑

i=1

�(w,Zi). (2)

A learning algorithm can be characterized by a random-
ized mapping from the training dataset S to a hypothesis W
according to a conditional distribution PW|S.

In statistical learning theory, the (mean) generalization
error1 of a supervised learning algorithm is the expected dif-
ference between the population risk of the output hypothesis
and its empirical risk on the training dataset:

gen
(
μ,PW|S

)
� EW,S

[
Lμ(W)− LS(W)

]
, (3)

where the expectation is taken over the joint distribution
PS,W = PS ⊗ PW|S. Note that PW|S will become degenerate
if W is a deterministic function of S. The generalization error
is used to measure the extent to which the learning algorithm
overfits the training data.

Main Contributions and Related Works

We first review the following lemma from [18], which pro-
vides an upper bound on the generalization error using the
mutual information I(S; W) between the training dataset S and
the output hypothesis W.

Lemma 1 [18, Th. 1]: Suppose �(w,Z) is R-sub-Gaussian2

under Z ∼ μ for all w ∈ W , then

∣∣gen
(
μ,PW|S

)∣∣ ≤
√

2R2

n
I(S; W). (4)

This mutual information based bound in (4) is related to the
“on-average” stability (see, e.g., [20]), since it quantifies the
overall dependence between the output of the learning algo-
rithm and all the input training samples via I(S; W). Note
that I(S; W) depends on the main components of a supervised
learning problem, i.e., the hypothesis space W , the learning
algorithm PW|S, and the data generating distribution μ, in con-
trast to the traditional bounds based on VC dimension or the
uniform stability, which only depend on one aspect of the
learning problem. We also note that there is a connection
between the mutual information based generalization bound
and the PAC-Bayesian bound in [21], since both methods adopt
the variational representation of relative entropy to establish
the decoupling lemma. By further exploiting the structure of

1The term “generalization error” of a learning algorithm is usually defined
as the difference between the population risk and the training error without
taking the expectation with respect to the randomness of the data and the learn-
ing algorithm. Here, we consider the expectation of the generalization error
over the randomness of both the data and the learning algorithm. We will use
the term “generalization error” throughout the paper, with the understanding
that it is the “mean generalization error”.

2A random variable X is R-sub-Gaussian if logE[eλ(X−EX)] ≤ R2λ2

2 ,
∀λ ∈ R.

the hypothesis space and the dependency between the algo-
rithm input and output, the authors of [19], [22] combined
the chaining and mutual information methods, and obtained a
tighter bound on the generalization error.

However, the bound in Lemma 1 and the chaining mutual
information (CMI) bound in [19] both suffer from the follow-
ing two shortcomings. First, for empirical risk minimization
(ERM), if W is the unique minimizer of LS(w) in W , then
W is a deterministic function of S and the mutual information
I(S; W) = ∞. It can be shown that both bounds are not tight
in this case. Second, both bounds assume that �(w,Z) has a
bounded cumulant generating function (CGF) under Z ∼ μ

for all w ∈ W , which may not hold in many cases (see
Section IV).

There has been some recent work on addressing these short-
comings of mutual information based bounds on generalization
error by using other information-theoretical measures, e.g.,
Wasserstein distance [23]–[25], maximal leakage [26], [27]
and total variation [28] to bound the generalization error. But
the measures proposed in these papers are difficult to evaluate
both analytically and empirically as we discuss in Section VI,
which significantly undermines the usefulness of these results
in practice.

In this paper, we get around the aforementioned shortcom-
ings by combining the idea of point-wise stability [14], [23]
with the information-theoretic framework introduced in [18].
Specifically, an algorithm is said to be point-wise stable if the
expectation of the loss function �(W,Zi) does not change too
much with the replacement of any individual training sample
Zi, and if an algorithm is point-wise stable, then it general-
izes well [14], [23]. Motivated by these facts, we tighten the
mutual information based generalization error bound through
a bound based on the individual sample mutual information
(ISMI) I(W; Zi). Compared with the bound in Lemma 1, and
the CMI bound in [19], the ISMI bound is derived under a
more general condition on the CGF of the loss function, is
applicable to a broader range of problems, and can provide a
tighter characterization of the generalization error.

The rest of the paper is organized as follows. In Section II,
we provide some preliminary definitions and results for our
analysis. In Section III, we introduce the individual sample
mutual information generalization bound. In Section IV, we
apply our method to bound the generalization errors of two
learning problems with infinite I(S; W). We show in the sec-
ond example that our ISMI bound can be tighter than the
CMI bound in [19], while the bound in Lemma 1 is infin-
ity. In Section V, we improve the generalization error bound
in [29] for SGLD algorithm using our method, which demon-
strates that the ISMI bound is applicable to the noisy, iterative
algorithms discussed in [29]. In Section VI, we provide an
example where the ISMI bound can be evaluated empirically
from the samples, while other existing bounds are difficult to
estimate due to prohibitive computational complexity.

II. PRELIMINARIES

We use upper letters to denote random variables, and calli-
graphic upper letters to denote sets. For a random variable X
generated from a distribution μ, we use EX∼μ to denote the
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expectation taken over X with distribution μ. We write Id to
denote the d-dimensional identity matrix. All the logarithms
are the natural ones, and all the information measure units
are nats. We use μ⊗n to denote the product distribution of n
copies of μ.

Definition 1: The cumulant generating function (CGF) of a
random variable X is defined as

�X(λ) � logE
[
eλ(X−EX)

]
. (5)

Assuming �X(λ) exists, it can be verified that �X(0) =
�′

X(0) = 0, and that it is convex.
Definition 2: For a convex function ψ defined on the

interval [0, b), where 0 < b ≤ ∞, its Legendre dual ψ∗ is
defined as

ψ∗(x) � sup
λ∈[0,b)

(λx − ψ(λ)). (6)

The following lemma characterizes a useful property of the
Legendre dual and its inverse function.

Lemma 2 [30, Lemma 2.4]: Assume that ψ(0) =
ψ ′(0) = 0. Then ψ∗(x) defined above is a non-negative con-
vex and non-decreasing function on [0,∞) with ψ∗(0) = 0.
Moreover, its inverse function ψ∗−1(y) = inf{x ≥ 0 : ψ∗(x) ≥
y} is concave, and can be written as

ψ∗−1(y) = inf
λ∈(0,b)

(
y + ψ(λ)

λ

)
. (7)

For an R-sub-Gaussian random variable X, ψ(λ) = R2λ2

2 is
an upper bound on �X(λ). Then by Lemma 2, ψ∗−1(y) =√

2R2y.

III. BOUNDING GENERALIZATION ERROR VIA I(W; Zi)

In this section, we first generalize the decoupling lemma
in [18, Lemma 1] to a different setting, and then tighten the
bound on generalization error via the individual sample mutual
information I(W; Zi).

A. General Decoupling Estimate

Consider a pair of random variables W and Z with joint
distribution PW,Z . Let W̃ be an independent copy of W, and
Z̃ be an independent copy of Z, such that PW̃Z̃ = PW ⊗ PZ .
Suppose f : W × Z → R is a real-valued function. If the
CGF �f (W̃ ,̃Z)(λ) of f (W̃, Z̃) can be upper bounded by some
function ψ for λ ∈ (b−, b+), we have the following theorem.

Theorem 1: Assume that �f (W̃ ,̃Z)(λ) ≤ ψ+(λ) for λ ∈
[0, b+), and �f (W̃ ,̃Z)(λ) ≤ ψ−(−λ) for λ ∈ (b−, 0] under
distribution PW̃Z̃ = PW ⊗ PZ , where 0 < b+ ≤ ∞ and
−∞ ≤ b− < 0. Suppose that ψ+(λ) and ψ−(λ) are convex,
and ψ+(0) = ψ ′+(0) = ψ−(0) = ψ ′−(0) = 0. Then,

E[f (W,Z)] − E
[
f
(
W̃, Z̃

)] ≤ ψ∗−1+ (I(W; Z)), (8)

E
[
f
(
W̃, Z̃

)]− E
[
f (W,Z)

] ≤ ψ∗−1− (I(W; Z)). (9)

Proof: Consider the variational representation of the relative
entropy between two probability measures P and Q defined
on X :

D(P‖Q) = sup
g∈G

{
EP[g(X)] − logEQ

[
eg(X)

]}
, (10)

where the supremum is over all measurable functions G =
{g : X → R, s.t. EQ[eg(X)] < ∞}, and equality is achieved
when g = log dP

dQ , where dP
dQ is the Radon–Nikodym derivative.

It then follows that ∀λ ∈ [0, b+),

I(W; Z) = D
(
PW,Z‖PW ⊗ PZ

)

≥ E
[
λf (W,Z)

]− logE
[
eλf(W̃ ,̃Z)

]

≥ λ
(
E
[
f (W,Z)

]− E
[
f
(
W̃, Z̃

)])− ψ+(λ), (11)

where the last inequality follows from the assumption that

�f
(
W̃; Z̃

) = logE
[
eλ(f(W̃ ,̃Z)−Ef(W̃ ,̃Z))

]
≤ ψ+(λ), (12)

for λ ∈ [0, b+). Similarly, for λ ∈ (b−, 0], it follows that

D
(
PW,Z‖PW ⊗ PZ

)

≥ λ
(
E[f (W,Z)] − E

[
f
(
W̃, Z̃

)])− ψ−(−λ). (13)

From (11) it follows that

E[f (W,Z)] − E
[
f
(
W̃, Z̃

)] ≤ inf
λ∈[0,b+)

I(W; Z)+ ψ+(λ)
λ

= ψ∗−1+ (I(W; Z)), (14)

and from (13) it follows that

E
[
f
(
W̃, Z̃

)]− E[f (W,Z)] ≤ inf
λ∈[0,−b−)

I(W; Z)+ ψ−(λ)
λ

= ψ∗−1− (I(W; Z)), (15)

where the equalities in (14) and (15) follow from Lemma 2.

Theorem 1 provides a different characterization of the
decoupling estimate than existing results. Specifically, it is
assumed that the CGF of f (w,Z) is bounded for all w ∈ W
and Z ∼ μ in [18, Lemma 1] and [31, Th. 2], whereas in
Theorem 1, it is assumed that the CGF of f (W̃, Z̃) is bounded
in expectation under PW̃Z̃ = PW ⊗ PZ .

B. Individual Sample Mutual Information Bound

Motivated by the idea of algorithmic stability, which mea-
sures how much an output hypothesis changes with the
replacement of an individual training sample, we construct the
following upper bound on the generalization error via I(W; Zi).

Theorem 2: Suppose �(W̃, Z̃) satisfies ��(W̃ ,̃Z)(λ) ≤ ψ+(λ)
for λ ∈ [0, b+), and ��(W̃ ,̃Z)(λ) ≤ ψ−(−λ) for λ ∈ (b−, 0]
under PZ̃,W̃ = μ ⊗ PW , where 0 < b+ ≤ ∞ and −∞ ≤
b− < 0. Then,

gen
(
μ,PW|S

) ≤ 1

n

n∑

i=1

ψ∗−1− (I(W; Zi)), (16)

−gen
(
μ,PW|S

) ≤ 1

n

n∑

i=1

ψ∗−1+ (I(W; Zi)). (17)

Proof: The generalization error can be written as follows:

gen
(
μ,PW|S

) = 1

n

n∑

i=1

(
EW ,̃Z

[
�
(
W, Z̃

)]− EW,Zi [�(W,Zi)]
)
,

(18)
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where W and Zi in the second term are dependent with PW,Zi =
μ ⊗ PW|Zi , and W and Z̃ in the first term are independent
with the same marginal distributions. Applying Theorem 1
completes the proof.

In the following proposition, we derive the ISMI bounds
under two different sub-Gaussian assumptions.

Proposition 1:
1) Suppose that �(w,Z) is R-sub-Gaussian under Z ∼ μ

for all w ∈ W , then

∣∣gen
(
μ,PW|S

)∣∣ ≤ 1

n

n∑

i=1

√
2R2I(W; Zi). (19)

2) Suppose that �(W̃, Z̃) is R-sub-Gaussian under distribu-
tion PW̃Z̃ = PW ⊗ PZ , then

∣∣gen
(
μ,PW|S

)∣∣ ≤ 1

n

n∑

i=1

√
2R2I(W; Zi). (20)

Proof:
1) The generalization error can be written as in (18), where

W and Zi in the second term are dependent with PW,Zi =
μ ⊗ PW|Zi , and W and Z̃ in the first term are independent
whose marginal distributions are the same as those of W and
Zi. The first inequality then follows from Lemma 1 by letting
S = Zi and n = 1, for each i = 1, . . . , n.

2) For an R-sub-Gaussian random variable, ψ−1+ (y) =
ψ−1− (y) = √

2R2y is an upper bound on its CGF. The second
inequality then follows from Theorem 2.

Remark 1: The condition that �(w,Z) is R-sub-Gaussian
under Z ∼ μ for all w ∈ W in the first part of Proposition 1 is
the same as the one in Lemma 1, which is not stronger than the
condition in the second part of Proposition 1. An example was
given in [32] for this argument. Specifically, consider W =
Z = R, with �(w, z) = w+z, and (W̃, Z̃) ∼ Cauchy⊗N (0, 1).
Then, �(w,Z) is 1-sub-Gaussian for any w ∈ W , whereas
�(W̃, Z̃) does not even have bounded absolute first moment.

The following proposition shows that the proposed ISMI
bound is always no worse than the bound using I(S; W) in
Lemma 1 and [31, Th. 2].

Proposition 2: Suppose that S = {Z1, . . . ,Zn} consists of n
independent samples, and ψ∗−1 is a concave function, then

1

n

n∑

i=1

ψ∗−1(I(W; Zi)) ≤ ψ∗−1
(

I(S; W)

n

)
. (21)

Proof: By the chain rule of mutual information,

I(W; S) =
n∑

i=1

I
(

W; Zi|Zi−1
)

(22)

where Zj = {Z1, . . . ,Zj}. Note that Zi and Zi−1 are indepen-
dent, i.e., I(Zi; Zi−1) = 0, it then follows that

I
(

W; Zi|Zi−1
)

= I
(

W; Zi|Zi−1
)

+ I
(

Zi; Zi−1
)

= I
(

W,Zi−1; Zi

)

= I(W; Zi)+ I
(

Zi−1; Zi|W
)

≥ I(W; Zi). (23)

Thus,

I(W; S) =
n∑

i=1

I
(

W; Zi|Zi−1
)

≥
n∑

i=1

I(W; Zi), (24)

and applying Jensen’s inequality completes the proof.
Remark 2: Under the sub-Gaussian condition (see sentence

following Lemma 1), we can let ψ∗−1(y) = √
2R2y. Then by

Proposition 2, the ISMI bound in Proposition 1 is always no
worse than the bound based on I(S; W) in Lemma 1.

Remark 3: Following arguments similar to those used in
the proof of I(W; Zi) ≤ I(W; Zi|Zi−1), we can also show that
I(W; Zi) ≤ I(W; Zi|S−i), where S−i denotes the set obtained
by deleting Zi from S. Therefore, the ISMI bound is always
no worse than the bound based on I(W; Zi|S−i) in [23, Th. 2].

In the next section, we will also show via several examples
that the ISMI bound provides a more accurate characterization
of the generalization error than the bound in Lemma 1 and the
chaining bound in [19].

IV. EXAMPLES WITH INFINITE I(W; S)

In this section, we consider two examples of learning algo-
rithms with infinite I(W; S). We show that for these examples,
the upper bound on generalization error in Lemma 1 blows
up, whereas the ISMI bound in Theorem 2 still provides an
accurate approximation. The details of the derivations of the
bounds can be found in the Appendices.

A. Estimating the Mean

We first consider the problem of learning the mean of a
Gaussian random vector Z ∼ N (μ, σ 2Id), which minimizes
the square error �(w,Z) � ‖w − Z‖2

2. The empirical risk with
n i.i.d. samples is

LS(w) �
1

n

n∑

i=1

‖w − Zi‖2
2, w ∈ R

d. (25)

The empirical risk minimization (ERM) solution is the sam-
ple mean W = 1

n

∑n
i=1 Zi, which is deterministic given

S. Its generalization error can be computed exactly as (see
Appendix A):

gen
(
μ,PW|S

) = 2σ 2d

n
. (26)

The bound in Lemma 1 is not applicable here due to the
following two reasons: (1) W is a deterministic function of
S, and hence I(S; W) = ∞; and (2) since Z is a Gaussian
random vector, the loss function �(w,Z) = ‖w − Z‖2

2 is not
sub-Gaussian for all w ∈ R

d. Specifically, the variance of the
loss function �(w,Z) diverges as ‖w‖2 → ∞, which implies
that a uniform upper bound on ��(w,Z)(λ), ∀w ∈ R

d does not
exist.

We can get around both of these issues by applying the
ISMI bound in Theorem 2. Since W ∼ N (μ, σ

2Id
n ), the mutual

information between each individual sample and the out-
put hypothesis I(W; Zi) can be computed exactly as (see
Appendix A):

I(W; Zi) = d

2
log

n

n − 1
, i = 1, . . . , n, n ≥ 2. (27)
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In addition, since W ∼ N (μ, σ
2Id
n ), it can be shown that

�(W, Z̃) ∼ σ 2
� χ

2
d , where σ 2

� � (n+1)σ 2

n , and χ2
d denotes the

chi-squared distribution with d degrees of freedom. Note that
the expectation of χ2

d distribution is d and its moment gener-
ating function is (1 − 2λ)d/2. Therefore, the CGF of �(W̃, Z̃)
is given by

��(W̃ ,̃Z)(λ) = −dσ 2
� λ− d

2
log
(

1 − 2σ 2
� λ
)
, (28)

for λ ∈ (−∞, 1
2σ 2
�

). Since W is the ERM solution, it follows

that gen(μ,PW|S) ≥ 0, and we only need to consider the case
λ < 0. It can be shown that (see Appendix A):

��(W̃ ,̃Z)(λ) ≤ dσ 4
� λ

2 � ψ−(−λ), λ < 0. (29)

Then, ψ∗−1− (y) = 2
√

dσ 4
� y. Combining the results in (27), we

have

gen
(
μ,PW|S

) ≤ σ 2d

√
2(n + 1)2

n2
log

n

n − 1
. (30)

As n → ∞, the above bound is O( 1√
n
), which is sub-optimal

compared to the true generalization error computed in (26).
We should note that techniques based on VC dimension [7]
and algorithmic stability [13] also yield bounds of O( 1√

n
).

B. Gaussian Process

In this subsection, we revisit the Gaussian process exam-
ple studied in [19]. Let W = {w ∈ R

2 : ‖w‖2 = 1}, and
Z ∼ N (0, I2) be a standard normal random vector in R

2. The
loss function is defined to be the following Gaussian process
indexed by w:

�(w,Z) � −〈w,Z〉, ∀w ∈ W . (31)

Note that the loss function3 �(w,Z) is sub-Gaussian with
parameter R = 1 for all w ∈ W . In addition, the output hypoth-
esis w ∈ W can also be represented equivalently using the
phase of w. In other words, we can let φ be the unique num-
ber in [0, 2π) such that w = (sinφ, cosφ). For this problem,
the empirical risk of a hypothesis w ∈ W is given by

LS(w) = −1

n

n∑

i=1

〈w,Zi〉. (32)

We consider two learning algorithms which are the same as
the ones in [19]. The first is the ERM algorithm:

W = arg min
φ∈[0,2π)

LS(w) = arg max
φ∈[0,2π)

〈
w,

1

n

n∑

i=1

Zi

〉
. (33)

The second is the ERM algorithm with additive noise:

W ′ =
(

arg max
φ∈[0,2π)

〈
w,

1

n

n∑

i=1

Zi

〉)
⊕ ξ (mod 2π), (34)

3The loss function can be negative here. We ignore the non-negativity
assumption of the loss function; this does not affect our analysis.

where the noise ξ is independent of S, and has an atom with
probability mass ε at 0, and probability 1 − ε uniformly dis-
tributed on (−π, π). Due to the symmetry of the problem, W
and W ′ are uniformly distributed over [0, 2π).

The generalization error of the ERM algorithm W can be
computed exactly as (see Appendix B):

gen
(
μ,PW|S

) =
√
π

2n
. (35)

For the second algorithm W ′, since the noise ξ is independent
from S, it follows that

gen
(
μ,PW ′|S

) = ε

√
π

2n
. (36)

The bound via I(W; S) in Lemma 1 is not applicable, since
W is deterministic given S and I(W; S) = ∞. Moreover, for
the second algorithm W ′,

I(W ′; S) = h(W ′)− h(W ′|S)
= log 2π − h(ξ) = ∞, (37)

since ξ has a singular component at 0, and h(ξ) = −∞.
Applying the ISMI bound in Theorem 2 to the ERM

algorithm W, we have that

I(W; Zi) = h(W)− h(W|Zi)

= log 2π − h(W|Zi)

= log 2π − EZi[h(W|Zi = zi)], (38)

which we need to compute the conditional distribution
PW|Zi=zi . Note that given Zi = zi, the ERM solution

W = arg max
φ∈[0,2π)

〈
w,

zi

n
+ 1

n

∑

j �=i

Zi

〉
(39)

depends on the other samples Zj, j �= i. Moreover, it can be
shown that PW|Zi=zi is equivalent to the phase distribution of
a Gaussian random vector N ( zi

n ,
n−1
n2 I2) in polar coordinates.

Due to symmetry, we can always rotate the polar coordi-
nates, such that zi = (r, 0), where r ∈ R

+ is the �2 norm
of zi. Then, PW|Zi=zi is a function of r, and can be equivalently
characterized and computed by the distribution f (φ|‖Zi‖ = r)
provided in Appendix B. Since the norm of Zi has a Rayleigh
distribution with unit variance, it then follows that

I(W; Zi) = log 2π − E‖Zi‖
[
h
(
f
(
φ
∣∣‖Zi‖ = r

))]
. (40)

Applying Theorem 2, we obtain

∣∣gen
(
μ,PW|S

)∣∣ ≤ 1

n

n∑

i=1

√
2I(W; Zi) = √

2I(W; Zi). (41)

Similarly, we can compute the ISMI bound for W ′.
Numerical comparisons are presented in Fig. 1 and Fig. 2. In

both figures, we plot the ISMI bound, the CMI bound in [19],
and the true values of the generalization error, as functions of
the number of samples n. In Fig. 1, we compare these bounds
for the ERM solution W. Note that the CMI bound reduces to
the classical chaining bound in this case. In Fig. 2, we evaluate
these bounds for the noisy algorithm W ′ with ε = 0.05. Both
figures demonstrate that the ISMI bound is closer to the true
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Fig. 1. Comparison of generalization bounds for the ERM algorithm.

Fig. 2. Comparison of different generalization bounds for the ERM algorithm
with additive noise ε = 0.05.

values of the generalization error, and outperforms the CMI
bound significantly. More details about the computations of
both bounds can be found in Appendix B.

V. NOISY, ITERATIVE ALGORITHMS

In this section, we apply the ISMI bound in Theorem 2 to
a class of noisy, iterative algorithms, specifically, stochastic
gradient Langevin dynamics (SGLD).

A. SGLD Algorithm

We begin by introducing some notation to be used in
this section. Denote the parameter vector at iteration t by
W(t) ∈ R

d, and let W(0) ∈ W denote an arbitrary initializa-
tion. At each iteration t ≥ 1, we sample a training data point
ZU(t) ∈ S, where U(t) ∈ {1, . . . , n} denotes the random index
of the sample selected at iteration t, and compute the gradient
∇�(W(t−1),ZU(t) ). We then scale the gradient by a step size
η(t) and perturb it by isotropic Gaussian noise ξ ∼ N (0, Id).
The overall update rule is as follows [33]:

W(t) = W(t−1) − η(t)∇�
(
W(t−1),ZU(t)

)+ σ(t)ξ, (42)

where σ(t) controls the variance of the Gaussian noise.
For t ≥ 0, let W(t) � {W(1), . . . , W(t)} and U(t) �

{U(1), . . . ,U(t)}. We assume that the training process takes

K epochs, and the total number of iterations is T = nK. The
output of the algorithm is W = W(T).

In the following, we use the same assumptions as in [29].
Assumption 1: �(w,Z) is R-sub-Gaussian with respect to

Z ∼ μ, for every w ∈ W .
Assumption 2: The gradients are bounded, i.e.,

supw∈W,z∈Z ‖∇�(W, z)‖2 ≤ L, for some L > 0.
In [29], the following bound was obtained by upper bound-

ing I(W; S) in Lemma 1.
Lemma 3 [29, Corollary 1]: The generalization error of the

SGLD algorithm is bounded by

∣∣gen
(
μ,PW|S

)∣∣ ≤
√√√√R2

n

T∑

t=1

η2
t L2

σ 2
t
. (43)

B. ISMI Bound for SGLD

We have the following proposition which characterizes the
ISMI bound for the SGLD algorithm.

Proposition 3: Suppose Assumption 1 and 2 hold, then we
have the following ISMI bound on the generalization error for
SGLD algorithm,

∣∣gen
(
μ,PW|S

)∣∣ ≤ EU(T)

⎡

⎢⎣
R

n

n∑

i=1

√√√√√
∑

τ∈Ti(U(T))

η2
(τ )L

2

σ 2
(τ )

⎤

⎥⎦, (44)

where U(T) denotes the random sample path, and Ti(U(T))

denote the set of iterations for which samples Zi is selected
for a given sample path U(T).

Proof: To apply the ISMI bound for SGLD, we modify the
result in Theorem 2 by conditioning on the random sample
path U(T),

∣∣gen
(
μ,PW|S

)∣∣ =
∣∣∣∣∣EU(T)

[
1

n

n∑

i=1

(
EW ,̃Z

[
�(W, Z̃)|U(T)

]

− EW,Zi

[
�(W,Zi)|U(T)

])]∣∣∣∣∣

≤ 1

|U |
∑

u(T)∈U

(
1

n

n∑

i=1

√
2R2I

(
W; Zi|U(T) = u(T)

)
)
,

(45)

where U denotes the set of all possible sample paths, and
I(W; Zi|U(T) = u(T)) is the mutual information4 with condi-
tional distribution P(W,Zi|U(T) = u(T)).

Let Ti(u(T)) denote the set of iterations for which sample
Zi is selected for a given sample path u(T). Using the chain
rule of mutual information, we have

I
(

W; Zi|U(T) = u(T)
)

≤ I
(

Zi; W(T)|U(T) = u(T)
)

=
T∑

τ=1

I
(

Zi; W(τ )|W(τ−1),U(T) = u(T)
)

4Note that this mutual information is different from the conditional mutual
information I(W; Zi|U(T)) = EU(T) [I(W; Zi|U(T) = u(T))].
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=
∑

τ∈Ti(u(T))

I
(

Zi; W(τ )|W(τ−1),U(T) = u(T)
)
, (46)

where the last equality is due to the fact that given u(T) and
W(τ−1), Zi is independent of W(τ ), if τ /∈ Ti(u(T)). For τ ∈
Ti(u(T)), i.e., if Zi is selected at iteration τ , we have

I
(

Zi; W(τ )|W(τ−1),U(T) = u(T)
)

= h
(
η(τ)∇�

(
W(τ−1),Zi

)+ σ(τ)ξ |W(τ−1)
)− h

(
σ(τ)ξ

)
.

Since we assume that supw∈W,Z∈Z ‖∇�(W,Z)‖2 ≤ L, we have

h
(
η(τ)∇�

(
W(τ−1),Zi

)+ σ(τ)ξ |W(τ−1)
)

≤ h
(
η(τ)∇�

(
W(τ−1),Zi

)+ σ(τ)ξ
)

≤ d

2
log

(
2πe

η2
(τ )L

2 + dσ 2
(τ )

d

)
. (47)

Due to the fact that ξ is an independent Gaussian noise,
h(σ(τ)ξ |W(τ−1)) = d

2 log(2πeσ 2
τ ), we have

I
(

Zi; W(τ )|W(τ−1),U(T) = u(T)
)

≤ d

2
log

(
1 + η2

(τ )L
2

dσ 2
(τ )

)
.

Combining with (45), it follows that

∣∣gen
(
μ,PW|S

)∣∣ ≤ EU(T)

⎡

⎣R

n

n∑

i=1

√√√√
∑

τ∈Ti(U(T))

η2
(τ )L

2

σ 2
(τ )

⎤

⎦, (48)

where we remove the log term by using log(1 + x) ≤ x.
To compare the result of the ISMI bound in Proposition 3

and the bound in Lemma 3, we specify the parameters in the
SGLD algorithms. As in [29], we set η(t) = c

t , and σ(t) = √
ηt.

We use the following “without replacement” sampling scheme
for SGLD to further simplify the computation. Specifically, for
the k-th training epoch, i.e., from the ((k−1)n+1)-th to kn-th
iterations, all training samples in S are used exactly once.

Then, the ISMI bound can be further bounded as follows:
∣∣gen

(
μ,PW|S

)∣∣

≤ RL

n
EU(T)

⎡

⎢⎣
n∑

i=1

√√√√
∑

τ∈Ti(U(T))

c

τ

⎤

⎥⎦

(a)≤ RL
√

c

n

n∑

i=1

√√√√1

i
+

K−1∑

k=1

1

nk

(b)≤ RL
√

c

n

n∑

i=1

√
1

i
+ log(K − 1)+ 1

n

(c)≤ RL√
n

(√
c log(K − 1)+ c + o(log log K)

)
, (49)

where (a) follows from the sampling scheme that all samples
are used exactly once in each epoch; (b) is due to the fact
that

∑K
k=1

1
k ≤ log(K)+ 1; and (c) follows by computing the

integral
∫ 1

0

√
1
x + 1 + log(K − 1)dx.

Comparing with the bound in [29],

∣∣gen
(
μ,PW|S

)∣∣ ≤ RL√
n

√
c log(nK)+ c, (50)

it can be seen that our bound is tighter by a factor of
√

log n
with the “without replacement” sampling scheme.

Remark 4: We note that for the typical use of SGLD, the
standard deviation of the noise is σt = √

2ηt/βt, where βt

denotes the inverse temperature at iteration t, and it is often
set to be �(n). It is clear that β = �(n) will lead to a gen-
eralization bound that does not decay in n. Here, we choose
βt = 2 for comparison with the bound in [29], while in prac-
tice β may be a function of n and grow with t. An analysis of
the generalization error bound of SGLD for arbitrary choices
of βt can be found in [32].

VI. EMPIRICAL EVALUATION OF ISMI BOUND FOR

LOGISTIC REGRESSION

For some learning algorithms applied in practice, it is
difficult to analytically characterize PW|S, which makes the
analytical evaluation of the ISMI bound challenging. In this
section, we provide such an example, that of logistic regres-
sion, for which it is difficult to analytically characterize the
learning algorithm via the conditional distribution PW|S. We
therefore empirically evaluate the ISMI bound via a mutual
information estimator, and compare it to an empirical evalua-
tion of the generalization error. We further note that the ISMI
bound is much easier to estimate than the bound in Lemma 1
and the chaining bound in [19] due to the significant reduction
in dimension that comes from estimating I(Zi; W) instead of
I(S; W).

Consider the binary classification problem, where the sam-
ples Z = (X,Y), consisting of features X ∈ R

d and labels
Y ∈ {±1}. We assume that training samples are generated
from the following distribution,

X ∼ N (μY , �), Y ∈ {±1}, μY ∈ R
d. (51)

The marginal distribution of X is the mixture of two Gaussian
distributions, and we assume that P(Y = −1) = P(Y = 1) =
1/2.

A binary classifier is constructed as follows:

Ŷ =
{

1, wTX ≥ 0;
−1, else.

(52)

We adopt classification error �(w,Z) = 1{Y �=Ŷ} to compute
the generalization error, then the empirical risk with n i.i.d.
samples is

LS(w) = 1

n

n∑

i=1

1{
Yi �=Ŷi

}. (53)

Since the empirical risk function is not differentiable, we
learn W by minimizing the following loss function of logistic
regression:

W = arg min
w∈W

1

n

n∑

i=1

log
(

1 + e−YiwT Xi
)
. (54)

In general, it is difficult to obtain a closed form solution for
this optimization problem, and therefore, (54) is usually solved
numerically. This makes it difficult to analytically character-
ize the conditional distribution PW|Zi , which in turn makes it

Authorized licensed use limited to: University of Illinois. Downloaded on December 04,2020 at 22:53:32 UTC from IEEE Xplore.  Restrictions apply. 



128 IEEE JOURNAL ON SELECTED AREAS IN INFORMATION THEORY, VOL. 1, NO. 1, MAY 2020

Fig. 3. Empirical evaluation of ISMI bound and generalization error in
Logistic regression.

challenging to compute the generalization error and the ISMI
bound analytically.

Alternatively, we can empirically estimate the generaliza-
tion error and the ISMI bound. Specifically, we train W for
N times using N sets of independent samples, and we use the
K-nearest neighbor based mutual information estimator [34],
[35] to estimate I(W; Zi) with N i.i.d. samples of W and Zi.
Note that the K-nearest neighbor based mutual information
estimator is consistent, and its mean squared estimation error

can be upper bounded by O(N− 2
dW +dZ ), where dW = d is the

dimension of the weights W, and dZ = d + 1 is the dimen-
sion of Z [35]. Moreover, since we use classification error to
compute generalization error, �(W,Z) is bounded by 1. Then,
by Hoeffding’s lemma, �(W,Z) is 1

2 -sub-Gaussian. Thus, the
ISMI bound can be estimated by

1

n

n∑

i=1

√
Î(W; Zi)

2
, (55)

where Î(W; Zi) is the estimate of I(W; Zi). If we apply an
optimization algorithm that does not depend on the order of the
samples, e.g., gradient descent and stochastic gradient descent
with random shuffling, we then only need to estimate one√

Î(W;Z1)
2 instead of estimating Î(W; Zi) for all 1 ≤ i ≤ n.

We note that the bound in Lemma 1 is difficult to estimate
due to the high dimension of S, which scales linearly with n.
Specifically, the training dataset S consists of n samples, and
therefore I(W; S) is the mutual information between two ran-
dom vectors with dimensions d and n(d+1). As shown in [35],
due to the curse of dimensionality, it is impossible to construct
a consistent mutual information estimator for large n. We also
note that the exact computation of Wasserstein distances is
costly in general, as it requires the solution of an optimal trans-
port problem [36]. Moreover, similar high dimensional issue
makes it even more difficult to directly estimate W(PW ,PW |S)
in the Wasserstein distance based generalization bound in [24],
[25].

In Fig. 3, we plot an empirical estimate of the ISMI bound
using (55), and compare it to the generalization error. In the
simulation, we chose the following model parameters: d = 2
and μ1 = (1, 1), μ−1 = (−1,−1) with � = 4I. We used
the K-nearest neighbor based mutual information estimator

(revised KSG estimator) in [35] with N = 5000 i.i.d. samples.
It can be seen that the ISMI bound has a similar convergence
behavior as the true generalization error as number of training
samples n increases.

VII. CONCLUSION

In this paper, we proposed a tighter information-theoretic
upper bound on the generalization error using the mutual
information I(Zi; W) between each individual training sample
Zi and the output hypothesis W of the learning algorithm. We
showed that compared to existing studies, our bound is more
broadly applicable, and is considerably tighter. More impor-
tantly, the individual sample mutual information is between
two vectors whose dimensions do not scale with the sample
size n. Therefore, unlike the existing bounds in [18], [19], [25],
the ISMI bound can easily be evaluated empirically in prac-
tice. As suggested by recent works, the proposed ISMI bound
could be further improved by combining with the chaining
method [22], or data-dependent estimates [32]. The proposed
information-theoretic framework can also be used to guide
model compression in deep learning [37].

APPENDIX A
SECTION IV-A DETAILS

A. Generalization Error

For this example, the generalization can be computed as

gen
(
μ,PW|S

)

= EW,S
[
Lμ(W)− LS(W)

]

= ES

[
EZ̃

[∥∥Z̄ − Z̃
∥∥2

2

]
− 1

n

n∑

i=1

∥∥Z̄ − Zi
∥∥2

2

]

= ES,̃Z

[
Tr
((

Z̄ − Z̃
)(

Z̄ − Z̃
)�)]

− ES

[
1

n

n∑

i=1

Tr
((

Z̄ − Zi
)(

Z̄ − Zi
)�)

]

= Tr
(
Cov

[
Z̄
])+ Tr

(
Cov

[̃
Z
])− n − 1

n
Tr(Cov[Z])

= 2

n
Tr(Cov[Z]) (56)

Since Cov[Z] = σ 2Id, we have gen(μ,PW|S) = 2σ 2d
n .

B. Individual Mutual Information

We note that both W and n i.i.d. samples Zi are Gaussian,
then the individual mutual information I(W; Zi) is a function
captured by the following covariance matrix,

Cov[W,Xi] =
(
�/n �/n
�/n �

)
. (57)

Then, we have

I(W; Xi) = 1

2
log

|Cov[W]||Cov[Xi]|
|Cov[W,Xi]|

= 1

2
log

|�/n||�|∣∣∣ n−1
n2 �

∣∣∣|�|
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= d

2
log

n

n − 1
, (58)

for all i = 1, . . . , n.

C. Upper Bound for CGF

Note that the CGF of �(W̃, Z̃) is given by

��(W̃ ,̃Z)(λ) = −dσ 2
� λ− d

2
log
(

1 − 2σ 2
� λ
)

= d

2
(−u − log(1 − u)), λ ∈

(
−∞,

1

2σ 2
�

)
, (59)

where u � 2σ 2
� λ. Further note that

− u − log(1 − u) ≤ u2

2
, u < 0. (60)

We therefore have the following upper bound on the CGF of
�(W̃, Z̃):

��(W̃ ,̃Z)(λ) ≤ dσ 4
� λ

2, λ < 0. (61)

APPENDIX B
SECTION IV-B DETAILS

A. Generalization Error

Note that the expectation of the population risk is

EW,S
[
Lμ(W)

] = EW,Z[−〈W,Z〉] = 0, (62)

since W and Z are independent. Then, the generalization error
can be computed as

gen
(
μ,PW|S

) = E[−LS(W)]

= EW,S

[
〈W, 1

n

n∑

i=1

Zi〉
]

= EW,S

∥∥∥∥∥
1

n

n∑

i=1

Zi

∥∥∥∥∥
2

=
√
π

2n
, (63)

where the last step is due to the fact that the distribution of
‖ 1

n

∑n
i=1 Zi‖2 is Rayleigh( 1

n ).

B. Individual Sample Mutual Information Bound

To compute the ISMI bound, we need the conditional dis-
tribution PW|Zi=zi . Note that given Zi = zi, the ERM solution
is

W = arg max
φ∈[0,2π)

〈
w,

zi

n
+ 1

n

∑

j �=i

Zi

〉
.

Also note that since φ ∈ [0, 2π), PW|Zi=zi is equivalent to the
phase distribution of a Gaussian random vector N ( zi

n ,
n−1
n2 I2)

in polar coordinates. Since entropy is shift-invariant, we can
always rotate the polar coordinates, such that zi = (r, 0), where
r ∈ R

+ is the �2 norm of zi.
The joint distribution of radius and phase (ρ, φ) in polar

coordinates can be obtained by applying the Jacobian method
to the Gaussian distribution N ( (r,0)n , n−1

n2 I2), and we have

f
(
ρ, φ

∣∣‖Zi‖ = r
) = n2ρ

2π(n − 1)
e− n2ρ2+r2

2(n−1) e− nrρ cosφ
(n−1) , (64)

for ρ ∈ [0,∞), φ ∈ [0, 2π).

Then, the marginal distribution of φ can be computed by
integrating out ρ from the joint distribution f (ρ, φ|‖Zi‖ = r):

f
(
φ
∣∣‖Zi‖ = r

)

=
∫ ∞

0
f
(
ρ, φ

∣∣‖Zi‖ = r
)
dρ

= 1

2π
e− r2

2(n−1) + r cosφ√
2π(n − 1)

e− r2 sin2 φ
2(n−1) Q

(
− r cosφ

n − 1

)
,

where Q(x) is the complementary cumulative distribution
function of the standard normal distribution.

Thus, the ISMI bound for the ERM algorithm W can
be evaluated using the following expression via numerical
integration:
∣∣gen

(
μ,PW|S

)∣∣ ≤ √
2I(W; Zi)

=
√

2 log 2π − 2E‖Zi‖
[
h
(
f
(
φ
∣∣‖Zi‖ = r

))]
.

(65)

Similarly, the ISMI bound for algorithm W ′ can be computed
via numerical integration using
∣∣gen

(
μ,PW ′|S

)∣∣ ≤ √
2I(W ′; Zi)

=
√

2 log 2π − 2E‖Zi‖
[
h
(
f (W ′∣∣Zi = zi)

)]
,

(66)

where the conditional distribution PW ′|Zi=zi can be character-
ized by the phase distribution

f
(
φ′∣∣‖Zi‖ = r

) = 1 − ε

2π
+ ε

2π
e− r2

2(n−1)

+ εr cosφ′
√

2π(n − 1)
e− r2 sin2 φ′

2(n−1) Q

(
− r cosφ′

n − 1

)
.

(67)

C. Chaining Mutual Information Bound

The CMI bound is computed based on the values provided
in [19, Table 1]. We note that the CMI bound in [19] is evalu-
ated for the case n = 1, i.e., there is only one training sample.
To plot the CMI bound in [19] as a function of the number
of samples n, we normalize the CMI bound by a

√
n factor in

Figures 1 and 2, since O(1/√n) is the true convergence rate
for the generalization error as shown in (63). For instance, [19,
Table 1] shows that the CMI bound for the ERM solution W
is 19.0352 when n = 1, which is equivalent to the classical
chaining bound. We therefore plot the curve 19.0352√

n
as the

CMI bound for comparison with the proposed ISMI bound in
Figure 1.
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