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Abstract—The problem of universal outlying sequence detection
is studied, where the goal is to detect outlying sequences among
M sequences of samples. A sequence is considered as outlying if
the observations therein are generated by a distribution different
from those generating the observations in the majority of the se-
quences. In the universal setting, we are interested in identifying all
the outlying sequences without knowing the underlying generating
distributions. We consider the outlying sequence detection prob-
lem in three different scenarios: first, known number of outlying se-
quences; second, unknown number of identical outlying sequences;
and finally, typical and outlying distributions forming clusters. In
this paper, a class of tests based on distribution clustering is pro-
posed. These tests are shown to be exponentially consistent with
linear time complexity in M . Numerical results demonstrate that
our clustering-based tests achieve similar performance to existing
tests, while being considerably more computationally efficient.

Index Terms—Anomaly detection, clustering algorithm, expo-
nential consistency, outlier detection, universal outlier hypothesis
testing.

I. INTRODUCTION

W E STUDY a universal outlying sequence detection prob-
lem, where the objective is to detect outlying sequences

among M sequences of samples. Each sequence consists of n
independent and identically distributed (i.i.d.) discrete observa-
tions. It is assumed that the observations in the majority of the
sequences are distributed according to typical distributions. A
sequence is considered as outlying if its distribution is different
from the typical distributions. We are interested in the universal
setting of the problem, where we do not know the probability
mass functions (pmfs) of both the typical and outlying distri-
butions, which are assumed to have full support over a finite
alphabet. Moreover, we consider the following three scenarios
for the outlying sequences detection problem in this paper: (1)
known number of outlying sequences; (2) unknown number of
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identical outlying sequences; and (3) typical and outlying dis-
tributions forming clusters. The goal is to design universal tests,
which do not depend on the typical and outlying distributions,
to efficiently discern all the outlying sequences in these three
different scenarios.

Outlying sequence detection finds possible applications in
many domains [2]. For example, in cognitive wireless networks,
channel measurements follow different distributions depending
on whether the channel is busy or vacant. In order to utilize
the vacant channels for improving spectral efficiency, such a
network need to efficiently identify vacant channels out of a
large number busy channels based on their corresponding sig-
nals. Other applications include anomaly detection in large data
sets [3], security monitoring in sensor networks [4], and detect-
ing an epidemic disease with aberrant genetic markers [5]. All
of these applications require a reliable algorithm that can be
implemented with low time complexity.

In the universal outlying sequence detection problem, we have
no prior knowledge and no training data to learn these distri-
butions before hand. Thus, the major challenges to solve this
problem lie in: (1) building distribution-free consistent tests,
and further guaranteeing their exponential consistency for dis-
tinct typical and outlying distributions; and (2) designing low-
complexity tests that can be used in practical applications. To
address theses challenges, we propose tests based on distribu-
tion clustering [6] for various scenarios. We show that our tests
are exponentially consistent, with time complexity that is linear
in the number of sequences M and independent of the number
of outlying sequences T .

The basic idea behind our clustering-based tests is that if we
observe a sequence of samples from each distribution, the em-
pirical distributions of the sequences will converge to the true
distributions as the number of samples goes to infinity. More-
over, the typical distributions (and also possibly the outlying
distributions) usually form a cluster in the three scenarios con-
sidered in this paper. The typical distributions are thus closer
to each other than to the outlying distributions. This suggests
that the outlying sequence detection problem can be solved by
clustering the empirical distributions using KL divergence as
the distance metric (see also [7]).

We note that our clustering-based tests are closely related
to the classical distribution clustering problem [6], [8]–[11],
but there are essential differences. In the distribution clustering
problem, the goal is to construct low-complexity algorithm to
find the cluster structure of distributions with the lowest cost
(sum of distance functions of each distribution in the cluster to
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the center). Whereas in our problem, we are given samples from
each distribution rather than the actual underlying distribution
itself. Since we are considering a detection problem, we are
more interested in the error probability of our test, rather than
the minimal clustering cost. Previous studies on approximation
algorithms for distribution clustering [8]–[10] only show that by
carefully seeding the initialization step, the cost corresponding
to the cluster structure returned by the approximation can be
bounded within a log K factor of the minimal cost, where K is
the number of clusters. And there are no results showing that
the approximation algorithms will converge to the minimal cost.
Therefore, their results cannot be directly applied to our problem
to provide statistical performance guarantees.

The problem of outlying sequence detection when all the typ-
ical distributions are identical was also studied previously as
a universal outlier hypothesis testing problem for discrete sam-
ples in [12] and for continuous samples in [13], [14]. In [12], the
exponential consistency of the generalized likelihood (GL) test
under various universal settings was established, where the GL
test is based on computing the generalized likelihood function
for each hypothesis by taking a maximum likelihood approach
with respect to the unknown distributions. However, GL test
cannot handle the scenario where the typical distributions are
possibly different from each other, and so are the outlying distri-
butions. Another major drawback of the GL test is its high time
complexity, which is exponential in M and T (actually MT or
2M depending on assumptions).

Our contributions in this paper are summarized as follows.
We construct clustering-based tests that are exponentially con-
sistent and have time complexity that is linear in M for various
scenarios. For the scenario where GL test is asymptotically op-
timal, we show that running more steps of the clustering-based
test will not decrease the error exponent. We also show that the
clustering-based tests are applicable to more general scenarios;
for example, when both the typical and outlying distributions
form clusters, the clustering-based test is exponentially consis-
tent, but the GL test is not even applicable. We provide numerical
results to demonstrate that the clustering-based tests can achieve
an error exponent similar to that of the optimal test, but with
time complexity that is linear in M . For all scenarios, our exper-
iments indicate that running more steps of the clustering-based
test results in a larger error exponent.

The rest of the paper is organized as follows. In Section II, we
describe the problem model and three different test scenarios.
In Section III, we introduce the GL test studied in [12], which
motivates the connection between universal outlying sequence
detection and distribution clustering. In Section IV, we reformu-
late the outlying sequence detection problem as a distribution
clustering problem. In Section V, we propose linear-complexity
tests based on the K-means clustering algorithm. In Section VI,
we provide numerical results. Finally in Section VII, we con-
clude the paper.

II. PROBLEM MODEL

Throughout the paper, all random variables are denoted by
capital letters, and their realizations are denoted by the corre-
sponding lower-case letters. All distributions are defined on the

Fig. 1. Outlying sequence detection with data sequences generated by typical
distributions denoted by π and outlying distributions denoted by μ.

finite set Y , and P(Y) denotes the set of all probability mass
functions on Y .

Consider an outlying sequence detection problem (see Fig-
ure 1), where there are in total M ≥ 3 data sequences denoted
by Y (i) for i = 1, . . . ,M . Each data sequence Y (i) consists of
n i.i.d. samples Y

(i)
1 , . . . , Y

(i)
n . The majority of the sequences

are distributed according to typical distributions except for a
subset S of outlying sequences, where S ⊂ {1, . . . ,M} and
1 ≤ |S| < M

2 . Each typical sequence j is distributed according
to a typical distribution πj ∈ P(Y), for j ∈ SC . Each outly-
ing sequence i is distributed according to an outlying distribu-
tion μi ∈ P(Y), for i ∈ S. Nothing is known about the pmfs
of μi and πj except that ∀i ∈ S, ∀j ∈ SC , ∀S ⊂ {1, . . . , M},
μi �= πj , and all of them have full support over Y . Denote S as
the set comprising all possible outlying subsets.

We use the notation y(i) = (y(i)
1 , . . . , y

(i)
n ), where y

(i)
k ∈ Y

is the k-th observation of the i-th sequence. Let γi denote the
empirical distribution of y(i) , and is defined as γi(y) � 1

n |{k =
1, . . . , n : yk = y}|, for each y ∈ Y .

A. Three Scenarios

In this paper, we focus on the following three scenarios.
1) Known Number of Outlying Sequences: We first study

the scenario where all the typical distributions are identical, i.e.,
πj = π, ∀j ∈ SC , and the number of the outlying sequences is
known at the outset, in Section III-A and Section V-A.

2) Unknown Number of Identical Outlying Sequences: We
next study the scenario where all the typical distributions are
identical (πj = π, ∀j ∈ SC ), all the outlying distributions are
also identical (μi = μ, ∀i ∈ S), and the number of the outlying
sequences is unknown, in Section III-B and Section V-B. We
note that without any further assumptions, when the number of
the outlying sequences is unknown and the outlying sequences
can be distinctly distributed, there does not exist a universally
exponentially consistent test [12].

3) Typical and Outlying Distributions Forming Clusters: We
then study a more general scenario where both the outlying
distributions {μi}i∈S and the typical distributions {πj}j∈S C

form clusters in Section V-C. Moreover, the typical distributions
and the outlying distributions are distinct. More concretely,

max
i,j∈S

D(μi‖μj ) < min
i∈S,j∈S C

{D(μi‖πj ),D(πj‖μi)},

max
i,j∈S C

D(πi‖πj ) < min
i∈S,j∈S C

{D(μi‖πj ),D(πj‖μi)}. (1)
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This condition means that the divergence between any two dis-
tributions within the same cluster is less than the divergence
between any two distributions from two different clusters.

B. Error Exponent

Our goal is to build distribution-free tests to detect the
outlying sequences. The test can be captured by a universal
rule δ : YM n → S, which must not depend on {μi}i∈S and
{πj}j∈S C . We use PS (·) to denote the probability conditioned
on the hypothesis that corresponds to the set of outlying se-
quences being S ∈ S. Thus, the joint distribution of all the
observations can be written as

PS (yM n ) = LS

(
yM n , {μi}i∈S , {πj}j∈S C

)

=
n∏

k=1

⎧
⎨
⎩
∏
i∈S

μi(y
(i)
k )

∏
j∈S C

πj (y
(j )
k )

⎫
⎬
⎭ , (2)

where LS

(
yM n , {μi}i∈S , {πj}j∈S C

)
denotes the likelihood.

The performance of a universal test is gauged by the maximal
probability of error, which is defined as

e
(
δ
)

� max
S∈S

∑
yM n : δ(yM n ) �=S

PS (yM n ),

and the corresponding error exponent is defined as

α
(
δ
)

� lim
n→∞−

1
n

log e
(
δ
)
.

Definition 1: A universal test δ is said to be universally ex-
ponentially consistent if α

(
δ
)

> 0.
We use D(π‖μ) and B(π, μ) to denote the KL divergence

and Bhattacharyya distance between distributions π and μ:

D(π‖μ) �
∑
y∈Y

π(y) log
(

π(y)
μ(y)

)
,

B(π, μ) � − log

⎛
⎝∑

y∈Y
π(y)

1
2 μ(y)

1
2

⎞
⎠ .

III. GENERALIZED LIKELIHOOD TEST

In this section, we introduce the GL test for outlying se-
quence detection studied in [12], and summarize its consistency
results (see [12] for details). Here, it is assumed that the typical
distributions are identical, i.e., πj = π, ∀j ∈ SC .

In the universal setting with π and {μi}i∈S unknown, condi-
tioned on the outlying set being S ∈ S, we compute the gener-
alized likelihood of yM n by replacing π and {μi}i∈S in (2) with
their maximum likelihood estimates (MLEs) {μ̂i}i∈S , and π̂S ,
as

P̂ univ
S (yM n ) = L̂S (yM n , {μ̂i}i∈S , π̂S ). (3)

The GL test [12] then selects the hypothesis under which the
GL is maximized (ties are broken arbitrarily), i.e.,

δGL(yM n ) = arg max
S∈S

P̂ univ
S . (4)

In the following subsections, we consider different scenarios,
where the suitable set S and the MLE of {μ̂i}i∈S , and π̂S may
differ.

A. Known Number of Outlying Sequences

We first consider the scenario in which the number of outlying
sequences, denoted by T ≥ 1, is known at the outset, i.e., S =
{S : S ⊂ {1, . . . , M}, |S| = T}. Moreover, the distributions of
different outlying sequences μi, i ∈ S, can be distinct from each
other.

We compute the generalized likelihood of yM n by replacing
the μi, i ∈ S and π in (2) with their MLEs:

μ̂i = γi, and π̂S =

∑
j∈S C γj

M − T
.

Then, as in [12], the GL test in (4) is equivalent to

δGL(yM n ) = arg min
S⊂S

∑
j∈S C

D

(
γj

∥∥∥∥
∑

j∈S C γj

M − T

)
. (5)

Proposition 1 ([12, Theorem 10]): Consider the scenario
when the number of outlying sequences is known. If the typical
distributions are identical, then the GL test in (5) is universally
exponentially consistent. As M →∞, the achievable error ex-
ponent converges as

lim
M→∞

α
(
δGL
)

= lim
M→∞

min
i=1,...,M

2B(μi, π).

When all the outlying sequences are identically distributed, i.e.,
μi = μ �= π, i = 1, . . . ,M , the achievable error exponent of the
GL test in (5) converges to the optimal one achievable when both
μ and π are known, i.e., 2B(μ, π).

Note that the number of hypotheses in the test (5) is
(
M
T

)
. An

exhaustive search over all possible hypotheses has time com-
plexity that is polynomial in M and exponential in T .

B. Unknown Number of Identical Outlying Sequences

In this subsection, we consider the scenario where the number
of outlying sequences is unknown, i.e., S = {S : S ⊂ {1, . . . ,
M}, 1 ≤ |S| < M/2}, and the hypotheses in S may have dif-
ferent numbers of outlying sequences. Moreover, it is assumed
that the typical distributions are identical, and the outlying dis-
tributions are identical.

As shown in [12], by replacing the μi , i ∈ S, and π in (2)
with their MLEs:

μ̂S = μ̂i =
∑

i∈S γi

|S| , and π̂S =

∑
j∈S C γj

M − |S| ,

the GL test in (4) is equivalent to

δGL(yM n ) = arg min
S⊂S

∑
j∈S C

D

(
γj

∥∥∥∥
∑

j∈S C γj

M − |S|
)

+
∑
i∈S

D

(
γi

∥∥∥∥
∑

i∈S γi

|S|
)

. (6)

Proposition 2 ([12, Theorem 11]): Consider the scenario
when the number of the outlying sequences is unknown,
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1 ≤ |S| < M
2 . If all the outlying sequences are identically dis-

tributed, and all the typical sequences are identically distributed,
the GL test in (6) is universally exponentially consistent.

Note that the number of hypotheses in the GL test (6) is∑�M/2�
i=1

(
M
i

)
, which is exponential in M . The time complexity

of (6) is even larger than that of (5), without the knowledge of
the number of outlying sequences.

Although the exponential consistency of the GL test under
various universal settings was established in [12], the high time
complexity, which is at least exponential in the number of out-
lying sequences T , limits its usage in applications.

In the following two sections, we reformulate the universal
outlying sequence detection problem as a distribution clustering
problem, and further propose clustering-based algorithms that
are computationally efficient and exponentially consistent. In
particular, we reduce the time complexity of our tests to O(M),
while still retaining a comparable error probability.

IV. PROBLEM REFORMULATION AS DISTRIBUTION CLUSTERING

The GL test can be interpreted as combinatorial clustering
over the probability simplex with the KL divergence as the
distance measure. More specifically, consider the problem of
clustering distributions p1 , p2 , . . . into K clusters, using a set of
cluster centers c = {c(1) , . . . , c(K )}, and a cluster assignment
C = {C(1) , . . . , C(K )}. If we define the following cost function
for distribution clustering

TC �
K∑

k=1

∑
i∈C (k )

D(pi‖c(k)). (7)

As shown in [6, Proposition 1], for a given cluster assignment
C = {C(1) , . . . , C(K )}, the cost is minimized when

c(k) =
∑

i∈C (k ) pi

|C(k) | ,

which is the average of the distributions within the k-th cluster.
Thus, for a given cluster assignment C =

{
C(1) , . . . , C(K )

}
,

we have

min
c( 1 ) ,...,c(K )

TC =
K∑

k=1

∑
i∈C (k )

D

(
pi

∥∥∥∥
∑

i∈C (k ) pi

|C(k) |
)

. (8)

To connect the distribution clustering problem with the GL
test, we first consider the scenario in Subsection III-B, in which
the typical distributions are identical and the outlying distribu-
tions are also identical. In view of (8), the GL test in (6) can be
interpreted as a distribution clustering algorithm for the empir-
ical distributions γi , 1 ≤ i ≤M , with K = 2 clusters. The first
term in (6) is the minimum cost in the typical cluster, and the
second term is the minimum cost within the outlying cluster, for
a given choice of S. The GL test then searches over all possible
cluster assignments, and chooses the one with minimum cost.

We then consider the scenario in Subsection III-A, where the
typical distributions are identically distributed, but outliers are
not (i.e., outlying distributions may not form a cluster). We can
utilize the knowledge of the number of outlying sequences, and
it suffices to only cluster the empirical distributions of all the
typical sequences, as shown in the GL test (5).

Algorithm 1: K-means Distribution Clustering Algorithm.
Input: M distributions p1 , . . . , pM , defined on Y , number
of clusters K.
Output: partition set {C(k)}Kk=1 .
Initialization: {c(k)}Kk=1 (Will be specified in Algorithms
2 and 3.)
Method:
while not converge do
{Assignment Step}
Set C(k) ← ∅, 1 ≤ k ≤ K
for i = 1 to M do

C(k ∗) ← C(k ∗) ∪ {pi}
where k∗ = arg mink D(pi‖c(k))

end for
{Re-estimation Step}
for k = 1 to K do

c(k) ←
∑

i∈C (k ) pi

|C (k ) |
end for

end while
Return {C(k)}Kk=1

Thus, both the GL tests in (5) and (6) are equivalent to em-
pirical distribution clustering on the probability simplex using
KL divergence as the distance metric.

While the distribution clustering problem itself is known to
be NP-hard [8], there are many existing approximation algo-
rithms with low time complexity, e.g., the K-means algorithm
[15]. Here, we introduce the K-means distribution clustering
algorithm in Algorithm 1, as proposed in [6].

Proposition 3 ([6, Proposition 3]): The cost function in (8)
of Algorithm 1 is monotonically decreasing with steps. More-
over, Algorithm 1 terminates in a finite number of steps at a
partition that is locally optimal, i.e., the total cost cannot be
decreased by either (a) the assignment step, or (b) changing the
means of any existing clusters.

Remark 1: The proof of Proposition 3 in [6] follows by the
fact that the number of distinct cluster assignments is finite,
and the fact that Algorithm 1 monotonically decreases the cost
function in (8). As shown in [16], for any Bregman divergence,
the number of iterations of the K-means algorithm in the worst
case can be upper bounded by O(MK 2 |Y|), where K is the
number of clusters.

For our problem, the number of clusters is 2. Then,
Algorithm 1 has polynomial time complexity in M even in
the worst case. In the following section, we will show that the
exponential consistency can be established with a well-designed
initialization in the first step, i.e., we do not need to wait for the
algorithm to converge. As also will be shown in Section VI, our
tests usually converge in a few steps.

V. CLUSTERING-BASED TESTS

In this section, we propose linear-complexity tests based on
the K-means clustering algorithm. We show in all three sce-
narios that the clustering-based tests using KL divergence as
the distance metric are also exponentially consistent, while
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Algorithm 2: Clustering with known Number of Outlying
Sequences.

Input: γ1 , . . . , γM , number of the outlying sequences T .
Output: A set of outlying sequences S.
Initialization:
γ(0) : Choose one distribution from γ1 , . . . , γM uniformly
and randomly
for i = 1 to M do

Compute D(γi‖γ(0))
end for
π̂ ← γ∗

where D(γ∗‖γ(0)) is the �M
2 �-th element among

D(γi‖γ(0)), 1 ≤ i ≤M in an ascending order
Method:
While not converge do
{Assignment Step}
Set S ← S∗,
where S∗ = arg maxS ′∈S,|S ′|=T

∑
i∈S ′ D(γi‖π̂)

{Re-estimation Step}
π̂ ←

∑
j ∈S C γj

M−T
end while
Return S

only taking linear time in M . For the scenario that the typical
and outlying distributions form two clusters, we show that the
clustering-based test is exponentially consistent, but the GL test
is not even applicable.

A. Known Number of Outlying Sequences

We first consider the scenario where the number of outlying
sequences T is known and the typical distributions are identical.

Note that Algorithm 1 cannot be directly applied here, be-
cause the outlying distributions may not form a cluster and
Algorithm 1 does not employ the knowledge of T .

Motivated by the test in (5), we design Algorithm 2. The nov-
elty of this algorithm lies in the construction of the first cluster
center for the typical distribution and the iterative approach
based on K-means to update it.

By the initialization in Algorithm 2, γ∗ is generated from π
with high probability. The intuition behind this is that: if γ(0) is
generated from the typical distribution π as shown in Figure 2(a),
then only |S| < M

2 empirical distributions which are generated
from μi are far from γ(0) ; if γ(0) is generated from some μi

as shown in Figure 2(b), then there are at least M − |S| > M
2

of D(γi‖γ(0)) concentrating at D(π‖μi). Thus, the �M
2 �-th

element among all D(γi‖γ(0)), 1 ≤ i ≤M , arranged in an as-
cending order, is close to D(π‖μi), and γ∗ is generated from π
with high probability.

Let δ2 denote the test described in Algorithm 2, and δ
(�)
2

denote the test that runs � number of K-means iterations in
Algorithm 2.

In the following theorem, we show that the test δ
(1)
2 (only one

iteration step) is universally exponentially consistent.

Fig. 2. Diagrams of Algorithm 2, where M = 10, |S | = 4. The star denotes
the (identical) typical distribution, and the circles and squares denote the em-
pirical distributions of the typical and outlying sequences, respectively.

Theorem 1: Consider the scenario when the number of out-
lying sequences T is known. If the typical distributions are
identical, the test δ

(1)
2 , which runs one K-means iteration in

Algorithm 2 is universally exponentially consistent. The achiev-
able error exponent of δ

(1)
2 can be upper bounded by

α
(
δ

(1)
2

) ≤ lim
M→∞

min
i=1,...,M

2B(μi, π). (9)

Furthermore, the time complexity of the test δ
(1)
2 is O(M).

Proof sketch: Errors made by δ
(1)
2 in the initialization step

can be decomposed into two scenarios. If γ(0) is generated
from typical distribution π, an error occurs when γ∗ is actually
generated from an outlying distribution. The probability of this
event can be upper bounded by the probability of the following
event

E1 = {∃ i ∈ S, ∃ j1 , j2 ∈ SC , D(γi‖γj1 ) < D(γj2 ‖γj1 )}.
If γ(0) is generated from an outlying distribution, the error prob-
ability can be upper bounded by the probability of the following
event

E2 = {∃ i1 , i2 ∈ S, ∃ j1 , j2 ∈ SC ,

D(γj1 ‖γi1 ) < D(γi2 ‖γi1 ) < D(γj2 ‖γi1 )}.
By Sanov’s theorem [17], we can prove that the probabilities of
both E1 and E2 decay exponentially fast.

The error probability in the assignment step can be upper
bounded by the probability of the same event E1 , which decays
exponentially fast by Sanov’s theorem.

Both the initialization and the assignment steps in Algorithm 2
that select the �M

2 �-th element and the T largest elements can be
computed in linear time O(M) using the Quickselect algorithm
in [18].

The details of the proof can be found in Appendix B. �
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A comparison between Proposition 1 and Theorem 1 shows
that δ

(1)
2 has a smaller error exponent than that of the GL test in

(5) as M →∞, but has a linear time complexity in M .
Although the exponential consistency can be established for

the one step test δ
(1)
2 , it is of further interest to investigate

whether the performance of Algorithm 2 improves with more
iterations. In the following theorem, we show that the asymp-
totic performance of Algorithm 2 does not decrease with more
iterations. We will also see in our numerical results in Section VI
that running more iterations of K-means always results in better
performance.

Theorem 2: For each M ≥ 3, when the number of outlying
sequences T is known, the test δ

(�)
2 is universally exponentially

consistent. As M →∞, the achievable error exponent of δ
(�)
2

in Algorithm 2 can be lower bounded by

lim
M→∞

α
(
δ

(�)
2

) ≥ lim
M→∞

α
(
δ

(1)
2

)
. (10)

Furthermore, the time complexity of the test δ
(�)
2 is O(M�).

Proof: From Theorem 1 and Proposition 1, we know that
both the one-step test δ

(1)
2 and the GL test δGL are exponentially

consistent. Then we have α
(
δ

(1)
2

)
> 0 and α

(
δGL
)

> 0. Denote

A �
{
yM n : δ

(1)
2 (yM n ) �= S

}
,

B �
{
yM n : δGL(yM n ) �= S

}
.

Then the set A ∪B contains those yM n such that at least one of
δ

(1)
2 and δGL makes an error. Thus,

lim
n→∞−

1
n

log
(

PS

(
A ∪B

))
= min

{
α
(
δ

(1)
2

)
, α
(
δGL
)}

.

This shows that the probability that at least one of δ
(1)
2 and δGL

makes an error decays exponentially fast. Thus, the one-step test
δ

(1)
2 and the GL test δGL output the same correct S with high

probability.
If δ

(1)
2 and δGL achieve the same outcome, which means both

δ
(1)
2 and δGL have achieved the global minimum of the cost

function (8), then running more iterations in Algorithm 2 will
not change the outcome. Thus,

e
(
δ

(�)
2

) ≤ PS

(
A ∪B

)
. (11)

The error exponent of running � iterations will be lower bounded
by

α
(
δ

(�)
2

)
= lim

n→∞−
1
n

log e
(
δ

(�)
2

)

≥ lim
n→∞−

1
n

log
(

PS

(
A ∪B

))

= min
{
α
(
δ

(1)
2

)
, α
(
δGL
)}

. (12)

As M →∞, we know that α(δ(1)
2 ) < α(δGL) from Theorem 1,

then we can conclude that

lim
M→∞

α(δ(�)
2 ) ≥ lim

M→∞
min(α(δGL), α(δ(1)

2 )) ≥ lim
M→∞

α(δ(1)
2 ).

Algorithm 3: Clustering with Unknown Number of Outly-
ing Sequences.

Input: M empirical distributions γ1 , . . . , γM defined on
finite alphabet Y .
Output: A set of outlying sequences S.
Initialization:
Choose one distribution γ(0) arbitrarily,
c(1) ← arg maxγi

D(γi‖γ(0))
c(2) ← γ(0)

Method: Same as in Algorithm 1 with K = 2
Return the smaller of the sets C(1) and C(2)

As for the time complexity, since each iteration has time com-
plexity O(M), δ

(�)
2 which runs � iterations has time complexity

O(M�). �
Remark 2: There are other works applying different distance

metrics in clustering algorithm, for example, using Rényi di-
vergence [19] or maximum mean discrepancy (MMD) [14].
However, the choice of KL divergence as the distance metric is
crucial in our theoretical analysis, and the reason is two-fold:

1) For a given cluster, the cost function with KL divergence
is minimized when the center is the average of all dis-
tributions in this cluster [6]. This property holds for all
Bregman divergences and ensures that the clustering al-
gorithm will terminate in finite steps. We have noticed
that using MMD (not a Bregman divergence) will result
in oscillating between two different clustering partitions.

2) As shown in [12], when there are a known number of
identically distributed outlying sequences, the GL test was
shown to be asymptotically optimal as M goes to infinity.
It is based on this asymptotic optimality of using KL
divergence that we prove that the error exponent of our
clustering-based test is not decreasing as running more
iterations.

B. Unknown Number of Identical Outlying Sequences

In this section, we consider the scenario where the number of
outlying sequences is unknown. Moreover, the typical distribu-
tions are identical, and the outlying distributions are identical.

Since there is no prior information on the number of outlying
sequences, we apply Algorithm 1 directly. Motivated by the test
in (6), we design the following initialization in Algorithm 3 to
set the cluster centers in Algorithm 1.

With high probability, c(1) and c(2) chosen by the initialization
step in Algorithm 3 are generated by different distributions.

Let δ3 denote the test described in Algorithm 3, and δ
(�)
3 de-

note the test that runs � iterations in Algorithm 3. The following
theorem shows that the clustering-based test δ

(�)
3 , is universally

exponentially consistent, and has time complexity that is linear
in M .

Theorem 3: Consider the scenario when the number of the
outlying sequences is unknown, and 1 ≤ |S| < M

2 . If all the
outlying sequences are identically distributed, and all the typical
sequences are identically distributed, the test δ

(�)
3 , which runs �



BU et al.: LINEAR-COMPLEXITY EXPONENTIALLY-CONSISTENT TESTS FOR UNIVERSAL OUTLYING SEQUENCE DETECTION 2121

steps of Algorithm 3, is exponentially consistent, and has time
complexity O(M�).

Proof sketch: The exponential consistency of δ
(�)
3 can be

established using similar techniques to those in Theorem 1
and Theorem 2. The major difference between the proof of
Theorem 1 and Theorem 3 is that there are two cluster centers
in the initialization step and assignment step in Algorithm 3.
The details can be found in Appendix C. �

C. Typical and Outlying Distributions Forming Clusters

In this subsection, we consider the scenario that both the
outlying distributions {μi}i∈S and the typical distributions
{πj}j∈S C are not identically distributed. Moreover, the typ-
ical distributions and the outlying distributions form clusters
as defined in (1), which means that the divergence within the
same cluster is always less than the divergence between different
clusters.

The following theorem shows that under the condition (1),
the one step test δ

(1)
3 proposed in Algorithm 3 is universally

exponentially consistent, and has time complexity that is linear
in M .

Theorem 4: For each M ≥ 3, when both the outlying dis-
tributions {μi}i∈S and the typical distributions {πj}j∈S C form

clusters, i.e. condition (1) holds, the test δ
(1)
3 , which runs one

step of Algorithm 3, is universally exponentially consistent, and
has time complexity O(M).

Proof sketch: The exponential consistency of δ
(1)
3 can be

established using techniques similar to those in Theorem 3. The
details can be found in Appendix D. �

The GL approach of replacing the true distribution in (2) by
their MLEs leads to identical likelihood estimates under each
hypothesis. Thus, the GL approach is not applicable here. One
could apply the test in (6) to this problem, but the following
example shows that the test in (6) is not universally exponentially
consistent, even if condition (1) holds.

Example 1: As shown in [12], the error exponent of the GL
test in (6) is established by showing the following optimization
problem has a positive value

min
q1 ,q2 ,...,qM ∈C (S , S ′)

∑
i∈S

D(qi‖μi) +
∑

j∈S C

D(qj‖πj ), (13)

where

C(S,S ′) =

{
(q1 , . . . , qM ) :

∑
i∈S

D

(
qi

∥∥∥∥
∑

k∈S qk

|S|
)

+
∑
j /∈S

D

(
qj

∥∥∥∥∥
∑

k /∈S qk

M − |S|

)
≥
∑
i∈S ′

D

(
qi

∥∥∥∥
∑

k∈S ′ qk

|S ′|
)

+
∑
j /∈S ′

D

(
qj

∥∥∥
∑

k /∈S ′ qk

M − |S ′|
)⎫⎬
⎭ .

Fig. 3. Comparison of tests δ
(1)
2 , δ2 , δGL , MMD-based test and FR-Smirnov

test with known number of distinct outlying distributions.

We consider the scenario where M = 1000, S = {1, 2}, the
typical and outlying distributions are specified as follows:

μ1 =
(

1
4
,
1
2
,
1
4

)
, μ2 =

(
1
5
,

7
15

,
1
3

)
,

π3 =
(

1
3
,
1
3
,
1
3

)
, π4 = · · · = π1000 =

(
247
500

,
32
125

,
1
4

)
.

It can be verified the clustering condition (1) holds for this
example. However, if we let q1 = μ1 , q2 = μ2 , q3 = π3 , q4 =
· · · = q1000 = π4 , S = {1, 2} and S ′ = {1, 2, 3}, then

∑
i∈S

D

(
qi‖
∑

k∈S qk

|S|
)

+
∑
j /∈S

D

(
qj‖
∑

k /∈S qk

M − |S|
)

≥
∑
i∈S ′

D

(
qi‖
∑

k∈S ′ qk

|S ′|
)

+
∑
j /∈S ′

D

(
qj‖
∑

k /∈S ′ qk

M − |S ′|
)

(14)

also holds, i.e., (q1 , q2 , . . . , qM ) ∈ CS,S ′ , which means the error
exponent in (13) is equal to zero. Thus, the test in (6) is not
universally exponentially consistent for the scenario where both
typical and outlying distributions form clusters.

VI. NUMERICAL RESULTS

In this section, we compare the performance of the proposed
clustering-based tests δ2 , δ3 (run until convergence) and the one
step tests δ

(1)
2 , δ

(1)
3 with the GL test δGL , and other baseline

tests including the MMD-based test [14] and the FR-Smirnov
test [20].

For the scenario with identical typical distribution, we set π to
be the uniform distribution with alphabet size 10, and generate
outlying distributions randomly.

We first simulate the scenario where the outlying distribu-
tions are distinct and T is known. We choose M = 20, T = 3.
In Figure 3, we plot the logarithm of the error probability as
a function of n for δGL , δ2 , δ

(1)
2 , the MMD-based test and the

FR-Smirnov test, averaged over 5000 Monte Carlo simulation
runs. As we can see from Figure 3, all the compared tests are
exponentially consistent, and the clustering-based tests outper-
form the MMD-based test and the FR-Smirnov test. Moreover,
δ2 outperforms δ

(1)
2 significantly, as suggested by Theorem 2.

A comparison of δ2 and δGL shows that they are close in



2122 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 8, APRIL 15, 2019

Fig. 4. Comparison of tests δ3 , δ
(1)
3 , MMD-based test and FR-Smirnov test

with unknown number of identical outlying distributions.

Fig. 5. Comparison of tests δ3 , δ
(1)
3 when typical distributions and outlying

distributions form clusters, respectively.

performance, but δ2 is about 50 times faster than δGL in terms
of computation time.

We then simulate the scenario with unknown number of iden-
tical outlying distributions. We set M = 100, T = 10. Figure 4
shows that δ3 outperforms δ

(1)
3 , the MMD-based test, and the

FR-Smirnov test. Note that the MMD-based test and the FR-
Smirnov test cannot deal with the scenario where T is unknown.
Here these tests are implemented with the knowledge of T . We
note that the GL test is not computationally feasible here, since
the number of hypotheses one needs to search over is exponen-
tial in M .

For the scenario where both the typical and outlying distri-
butions form clusters, we set the alphabet size to be 10. And
we choose the uniform distribution as the center of the typical
cluster. We generate the typical distributions by adding some
Gaussian noise to the cluster center, and then normalizing them.
The cluster of the outlying distributions are generated in the
same way, but with a randomly chosen cluster center. We set
M = 100, T = 10. The dotted lines in Figure 5 correspond to
the scenario where the typical distributions are identical and the
outlying distributions are identical, and equal to the correspond-
ing cluster center. The solid lines correspond to the scenario
where both the typical and outlying distributions are generated
by the approach mentioned above, which form clusters. Figure 5
shows that the tests δ

(1)
3 and δ3 are exponentially consistent, and

that δ3 outperforms δ
(1)
3 for both scenarios.

Figures 3, 4 and 5 demonstrate the exponential consistency
of the proposed test by plotting the logarithm of the error

Fig. 6. Comparison of tests δ3 , δ
(1)
3 , MMD-based test and FR-Smirnov test

with different unknown number of identical outlying sequences.

Fig. 7. Average number of steps for convergence of test δ3 versus number of
samples n.

probability as a function of n. To illustrate how the number
of outlying sequences influences the test performance, we plot
the logarithm of the error probability as a function of T in Fig-
ure 6. We use the same setting as in Figure 4, with the knowledge
of T being used when implementing the MMD-based and FR-
Smirnov tests. We set M = 100, n = 400, and let T range from
5 to 45. Figure 6 shows that δ3 outperforms all the other tests.
In addition, the error probability of δ3 decreases as T increases,
while the error probabilities of the other compared tests increase.
The improved performance of δ3 is due to the fact that the K-
means clustering algorithm performs better when the clusters
become more balanced, which happens as T increases.

We further study the number of iterations that δ3 takes to
converge. Figure 7 plots the average number of steps of test
δ3 versus the number of samples, using the same setting as in
Figure 4. It is seen that the more the samples collected, the fewer
the iterations needed. Moreover, when the number of samples
n goes to infinity, δ3 converges in just one step, which explains
the exponential consistency of the test δ

(1)
3 .

Moreover, we compare how the time complexity of the
clustering-based test δ3 , δ

(1)
3 , the MMD-based test, and the FR-

Smirnov test varies as a function of the number of sequences
M . Note that as seen in Theorems 1, 2 and 3, the time com-
plexity of these tests is independent of the number of outlying
sequences T . Thus, we simulate the scenario where the number
of outlying sequences T changes with the number of sequences
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Fig. 8. Comparison of the log-scale average running time versus number of
sequences M .

Fig. 9. Comparison of tests δ3 , δ
(1)
3 with other tests on the climate type

dataset.

M , and plot the log-scale average running time in Figure 8. The
experiments are simulated using a 3.6 GHz i7 CPU. We use the
same setting as in Figure 4. The knowledge of T is used when
implementing the MMD-based test and the FR-Smirnov test.
Here, we set T = M/5, where M ranges from 40 to 200, and
n = 400. Figure 8 shows that δ3 , δ

(1)
3 and the FR-Smirnov test

have time complexity that is linear in M . However, the time
complexity of the MMD-based test is O(M 2) [14].

The constant gap between the curve of δ3 and δ
(1)
3 in Figure 8

shows that the number of iterations that δ3 takes to converge
does not change much as M increases. Thus, both Figure 7
and Figure 8 show that in general our clustering-based test δ3
converges in very few steps.

Finally, we compare the performance of these tests on a real
climate type dataset. The climate data taken by different weather
stations are obtained from the National Center for Atmospheric
Research data archive [21]. We label the climate type of each
station using the Koppen-Geiger climate classification method
[22]. The sequences are constructed by quantizing the precipi-
tation records of each month at different weather stations into
20 different levels, i.e., the precipitation records across months
form a sequence consisting of discrete observations for each
station. We randomly choose 16 stations in southeast China and
southeast North America (191 stations in total) to construct the
typical sequences, and randomly choose T = 4 stations in north
Africa and central Australia (13 stations in total) to construct the
outlying sequences. We randomly choose n months from 1987
until 2012, and let n vary. We plot the probability of error for δ3 ,

δ
(1)
3 , the MMD-based test and the FR-Smirnov test as a function

of n in Figure 9. Again, T is known in the implementation of the
MMD-based test and the FR-Smirnov test. It can be seen that
the clustering-based test δc3 achieves similar performance as the
MMD-based test and the FR-Smirnov test, despite lacking the
knowledge of T .

In many practical applications, e.g., natural language pro-
cessing, the alphabet size of the underlying distributions can be
very large. To estimate the KL divergence efficiently, we can
utilize the minimax optimal KL divergence estimator proposed
in [23] and random projection technique [24] to reduce the com-
putational complexity of K-means clustering algorithm, which
might be a path for future work.

VII. CONCLUSION

In this paper, we have investigated the universal outlying
sequence detection problem. We have constructed clustering-
based tests that are exponentially consistent and have time com-
plexity that is linear in M for various scenarios. For the sce-
nario where GL test is asymptotically optimal, we have shown
that running more steps of the clustering-based test does not
decrease the error exponent. We have further shown that the
clustering-based tests are applicable to more general scenarios.
For example, when both the typical and outlying distributions
form clusters, the clustering-based test is exponentially consis-
tent, but the GL test is not even applicable. We have provided
numerical results to demonstrate that our clustering-based test
can achieve a similar error exponent as the GL test.

Our study provides a new way to quantify the performance
of distribution clustering algorithms, via the lens of exponential
consistency. We believe that this approach can be applied to uni-
versal outlying sequence detection with continuous distributions
and also to other nonparametric problems.

APPENDIX A
USEFUL LEMMAS

Lemma 1 ([12, Lemma 1]): Let Y (1) , . . . , Y (J ) be mutually
independent random vectors with each Y (j ) , j = 1, . . . , J , be-
ing n i.i.d. samples of a random variable distributed according to
pj ∈ P(Y). Let An be the set of all J tuples (y(1) , . . . ,y(J )) ∈
YJ n whose empirical distributions (γ1 , . . . , γJ ) lie in a closed
set E ∈ P(Y)J . Then,

lim
n→∞−

1
n

log P
{(

Y (1) , . . . , Y (J )) ∈ An

}

= min
(q1 ,...,qJ )∈E

J∑
j=1

D(qj‖pj ). (15)

Lemma 2 ([12, Lemma 2]): For any two pmfs p1 , p2 ∈ P
(Y) with full supports, it holds that

2B(p1 , p2) = min
q∈P(Y)

(
D(q‖p1) + D(q‖p2)

)
. (16)

In particular, the minimum on the right side is achieved by

q∗ =
p

1/2
1 (y)p1/2

2 (y)∑
y∈Y p

1/2
1 (y)p1/2

2 (y)
, y ∈ Y. (17)
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APPENDIX B
PROOF OF THEOREM 1

Due to the structure of the test we know that errors may occur
at the following two steps:

1) Initialization Step: The constructed cluster center for typ-
ical sequences π̂ is actually generated from an outlying
distribution.

2) Assignment Step: Given that the cluster center π̂ is actu-
ally generated from typical distribution π, the empirical
distribution of an outlying sequence is closer to π̂.

We use E to denote the event that errors occur in the initial-
ization step. It is difficult to write the explicit form of the event
E. However, we can find upper bounds for the probability of E
for the following two scenarios.

If γ(0) is generated from the typical distribution π, an er-
ror occurs when π̂ is actually generated from an outlying dis-
tribution, then D(γi‖γ(0)) ≤ D(γj‖γ(0)) must hold for some
i ∈ S, j ∈ SC . Due to the arbitrariness of γ(0) , the probability
of this error event can be upper bounded by the probability of
the following event:

E1 �
{∃ i ∈ S, ∃ j1 , j2 ∈ SC , D(γi‖γj1 ) ≤ D(γj2 ‖γj1 )

}
.

(18)
If γ(0) is generated from an outlying distribution, the error

probability can be upper bounded by the probability of the fol-
lowing event:

E2 �
{∃ i1 , i2 ∈ S, ∃ j1 , j2 ∈ SC ,

D(γj1 ‖γi1 ) < D(γi2 ‖γi1 ) < D(γj2 ‖γi1 )
}
. (19)

Thus, PS (E) ≤ PS (E1) + PS (E2).
We then use F to denote the event that errors occur at the

assignment step, then

F � EC
⋂{∃ i ∈ S, ∃ j ∈ SC , D(γi‖π̂) ≤ D(γj‖π̂)

}
.

(20)
Note that F ⊂ E1 , then the probability of error event F can be
upper bounded by that of the event E1 .

The error probability of the test δ
(1)
2 can be bounded by

e
(
δ

(1)
2

)
= PS

(
E ∪ F

) ≤ PS (E) + PS (F ). (21)

The right hand side of (21) can be further bounded by

PS (E) + PS (F )

≤ PS (E1) + PS (E2) + PS (E1)

≤ 2PS

⎛
⎜⎜⎝

⋃

j1 ,j2 ∈S C

i∈S

{D(γi‖γj1 ) ≤ D(γj2 ‖γj1 )}

⎞
⎟⎟⎠

+ PS

⎛
⎜⎜⎝

⋃

j1 ,j2 ∈S C

i1 ,i2 ∈S

{D(γj1 ‖γi1 ) < D(γi2 ‖γi1 ) < D(γj2 ‖γi1 )}

⎞
⎟⎟⎠

(a)
≤ (M − T )2T 2

(
2max

i∈S
PS

(
D(γi‖γj1 ) ≤ D(γj2 ‖γj1 )

)

+ max
i1 ,i2 ∈S

PS

(
D(γj1 ‖γi1 ) < D(γi2 ‖γi1 ) < D(γj2 ‖γi1 )

))
,

(22)

where the union bound (a) holds for all j1 , j2 ∈ SC , since all
typical sequences are generated from the same distribution π.

From Lemma 1, we know the exponent can be computed as

α1 � lim
n→∞−

1
n

log max
i∈S

PS

(
D(γi‖γj1 ) ≤ D(γj2 ‖γj1 )

)

= min
q1 ,q2 ,q3∈C1

i∈S

D(q1‖μi) + D(q2‖π) + D(q3‖π), (23)

where C1 � {(q1 , q2 , q3) : D(q1‖q2) ≤ D(q3‖q2)}, and

α2 � lim
n→∞−

1
n

log max
i1 ,i2 ∈S

PS

(
D(γj1 ‖γi1 )

< D(γi2 ‖γi1 ) < D(γj2 ‖γi1 )
)

= min
q1 ,q2 ,q3 ,q4 ∈C2

i1 ,i2 ∈S

(
(D(q1‖π) + D(q2‖π)

+ D(q3‖μi1 ) + D(q4‖μi2 )
)
, (24)

C2 �
{
(q1 , q2 , q3 , q4) : D(q1‖q3) < D(q4‖q3) < D(q2‖q3)

}
.

It can be verified that the objective function in (23) can only
be zero for the case q1 = μi , q2 = q3 = π, which are not in
the constraint set C1 . The objective function in (24) can only
be zero when q1 = q2 = π, q3 = μi1 , q4 = μi2 , which cannot
meet the constraint in set C2 either. Thus, we can conclude that
α1 , α2 > 0. From the fact that limn→∞

log M (M−T )
n = 0, we

get that

α
(
δ

(1)
2

)
= lim

n→∞−
1
n

log e
(
δ

(1)
2

) ≥ min{α1 , α2}. (25)

This result shows that the one step test δ
(1)
2 is universally expo-

nentially consistent.
We next derive a lower bound for e(δ(1)

2 ) by considering
the error exponents for specific error events. To simplify the
notation, we assume that S = {M − T + 1, . . . , M}, i.e., that
Y (M−T +1) , . . . , Y (M ) are the outlying sequences, and that

D(μM−T +1‖π) ≤ D(μM−T +2‖π) ≤ · · · ≤ D(μM ‖π). (26)

Since T < M/2, it holds that Y (�M
2 �) is a typical sequence. We

then bound e(δ(1)
2 ) for the following two cases, depending on

whether Y (�M
2 �)+1 is typical or not.

Case I: T < �M
2 �: It can be verified that �M

2 �+ 1 ≤M −
T , and hence Y (�M

2 �+1) and Y (M−T ) are two distinct typical
sequences. We consider the following event,

A �
{
γ(0) = γ1 ,D(γ2‖γ1) ≤ D(γ3‖γ1) ≤ · · · ≤ D(γM ‖γ1)

}
.

Since Y (�M
2 �) is a typical sequence, the constructed cluster cen-

ter in the initialization step π̂ = γ�M
2 � is generated from the

typical distribution, conditioned on the event A. This means
that A ⊆ EC .
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Note that Y (�M
2 �) and Y (M−T ) are distinct. We further con-

sider the following error event in the assignment step,

B �
{

D(γM−T +1‖γ�M
2 �) ≤ D(γM−T ‖γ�M

2 �)
}

. (27)

Since Y (M−T +1) is an outlying sequence, and Y (M−T ) is a
typical one, we have that A ∩B ⊂ F . Thus,

e
(
δ

(1)
2

) ≥ PS (F ) ≥ PS (A ∩B). (28)

Case II: T = �M
2 � It can be verified that M − T = �M

2 �, and

hence Y (�M
2 �+1) is an outlying sequence. Consider the event

A′ �
{
γ(0) = γ1 ,D(γ2‖γ1) ≤ · · · ≤ D(γM−T −1‖γ1)

≤ D(γM−T +1‖γ1) ≤ D(γ�M
2 �‖γ1)

≤ D(γM−T +2‖γ1) ≤ · · · ≤ D(γM ‖γ1)
}
, (29)

which means that the π̂ chosen in the initialization step is
γM−T +1 . Since Y (M−T +1) is an outlying sequence, we have
that A′ ⊂ E, and e

(
δ

(1)
2

) ≥ PS (E) ≥ PS (A′).
We note that by the algorithm, the event of choosing γ(0) = γ1

has probability 1
M , and is independent of the observations in all

the sequences. By Lemma 1, the error exponents of PS (A ∩B)
and PS (A′) can be computed as follows,

α3 � lim
n→∞−

1
n

log PS (A ∩B)

= min
q1 ,...,qM ∈C3

M−T∑
j=1

D(qj‖π) +
M∑

i=M−T +1

D(qi‖μi), (30)

C3 �
{
(q1 , . . . , qM) : D(qM−T +1‖q�M

2 �) ≤ D(qM−T ‖q�M
2 �),

D(q2‖q1) ≤ D(q3‖q1) ≤ · · · ≤ D(qM ‖q1)
}
, (31)

α4 � lim
n→∞−

1
n

log PS (A′)

= min
q1 ,...,qM ∈C4

M−T∑
j=1

D(qj‖π) +
M∑

i=M−T +1

D(qi‖μi), (32)

C4 �
{
(q1 , . . . , qM ) : D(q2‖q1) ≤ · · · ≤ D(qM−T −1‖q1)

≤ D(qM−T +1‖q1) ≤ D(qM−T ‖q1)

≤ D(qM−T +2‖q1) ≤ · · · ≤ D(qM ‖q1)
}
. (33)

If we add the constraint that qM−T +1 = qM−T , i.e., C ′3 =
C3 ∩ {qM−T +1 = qM−T = q} and C ′4 = C4 ∩ {qM−T +1 =
qM−T = q} , then C ′3 ⊂ C3 and C ′4 ⊂ C4 , and

α3 ≤ min
q1 ,...,qM ∈C ′3

M−T∑
j=1

D(qj‖π) +
M∑

i=M−T +1

D(qi‖μi)

= min
q∈P(Y)

D(q‖π) + D(q‖μM−T +1), (34)

α4 ≤ min
q1 ,...,qM ∈C ′4

M−T∑
j=1

D(qj‖π) +
M∑

i=M−T +1

D(qi‖μi)

= min
q∈P(Y)

D(q‖π) + D(q‖μM−T +1), (35)

where the last steps of both inequalities follow by setting q1 =
· · · = qM−T −1 = π, and qi = μi , for i = M − T + 2, . . . , M .
It can be verified that these distributions satisfy the constraints in
C ′3 and C ′4 . From Lemma 2, it follows that the minima are both
equal to the Bhattacharyya distance between the distributions
μM−T +1 and π. Therefore,

max{α3 , α4} ≤ 2B(μM−T +1 , π) = min
i∈S

2B(μi, π), (36)

where the last step follows from (26). Thus, as M →∞,

α
(
δ

(1)
2

) ≤ max{α3 , α4} ≤ lim
M→∞

min
i∈S

2B(μi, π). (37)

As for the time complexity, it is obvious that the initialization
step in Algorithm 2 can be executed within O(M) time. The as-
signment step in Algorithm 2, which finds the largest T elements
from size M array, can be solved in linear time O(M) using the
Quickselect algorithm proposed in [18]. Thus the overall time
complexity is O(M) and independent of T .

APPENDIX C
PROOF OF THEOREM 3

The exponential consistency of δ
(�)
3 can be established using

techniques similar to those in Theorem 1 and Theorem 2. The
major difference between the proof of Theorem 1 and Theorem 3
is that there are two cluster centers in the initialization step and
assignment step in Algorithm 3.

We first establish the exponential consistency of the one-step
test δ

(1)
3 . Due to the structure of the test we know that errors

may occur at two different steps:
1) Initialization Step: The constructed cluster center for typ-

ical sequences π̂ and outlying sequences μ̂ are actually
generated from the same distribution.

2) Assignment Step: The empirical distribution of an outly-
ing sequence is closer to the cluster center of the typical
sequence π̂, and vice versa.

We use E to denote the event that errors occur in the ini-
tialization step. The error event E can be decomposed into two
parts, since γ(0) is chosen arbitrarily and can be generated from
π or μ:

E � E1 ∪ E2 , (38)

where

E1 �
{

max
j∈S C

D(γj‖γ(0)) > max
i∈S

D(γi‖γ(0)),

γ(0) is generated from π

}
, (39)

E2 �
{

max
i∈S

D(γi‖γ(0)) > max
j∈S C

D(γj‖γ(0)),

γ(0) is generated from μ

}
. (40)

Denote

Ai �
{
∃ j2 ∈ SC , max

j1 ∈S C
D(γj1 ‖γj2 ) > D(γi‖γj2 )

}
, (41)
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for all i ∈ S, and

Bj �
{
∃ i2 ∈ S, max

ii ∈S
D(γi1 ‖γi2 ) > D(γj‖γi2 )

}
, (42)

for all j ∈ SC . Since γ(0) is chosen arbitrarily, we have

E =

(⋂
i∈S

Ai

)⋃
⎛
⎝ ⋂

j∈S C

Bj

⎞
⎠ . (43)

We use F to denote the event that errors occur at the assign-
ment step, given that the clustering center c1 and c2 chosen by
Algorithm 3 are coming from different distributions. We further
denote the cluster center which is actually generated from the
typical (outlying) distribution by π̂ (μ̂). Then F can be written
as

F � F1 ∪ F2 , (44)

F1 � EC
⋂{
∃ j ∈ SC , D(γj‖π̂) > D(γj‖μ̂)

}
, (45)

F2 � EC
⋂{
∃ i ∈ S, D(γi‖μ̂) > D(γi‖π̂)

}
. (46)

Thus, we can upper bound the error probability of the one-step
test δ

(1)
3 by

e
(
δ

(1)
3

)
= PS

(
E ∪ F

) ≤ PS (E) + PS (F ). (47)

The first term on the right hand side can be bounded as,

PS (E) ≤ PS

(⋂
i∈S

Ai

)
+ PS

⎛
⎝ ⋂

j∈S C

Bj

⎞
⎠

≤ PS (Ai) + PS (Bj )

(a)
≤ (M − |S|)PS

(
max
j1 ∈S C

D(γj1 ‖γj2 ) > D(γi‖γj2 )
)

+ |S|PS

(
max
ii ∈S

D(γi1 ‖γi2 ) > D(γj‖γi2 )
)

(b)
≤ (M − |S|)2PS

(
D(γj1 ‖γj2 ) > D(γi‖γj2 )

)

+ |S|2PS

(
D(γi1 ‖γi2 ) > D(γj‖γi2 )

)
, (48)

where the union bound (a) and (b) holds for all j, j1 , j2 ∈ SC

and i, i1 , i2 ∈ S, since all typical distributions are identical and
all outlying distributions are identical.

From Lemma 1, we obtain

α5 � lim
n→∞−

1
n

log PS

(
D(γj1 ‖γj2 ) > D(γi‖γj2 )

)

= min
q1 ,q2 ,q3 ∈C5

D(q1‖π) + D(q2‖π) + D(q3‖μ), (49)

where C5 �
{
(q1 , q2 , q3) : D(q1‖q2) > D(q3‖q2)

}
, and

α6 � lim
n→∞−

1
n

log PS

(
D(γi1 ‖γi2 ) > D(γj‖γi2 )

)

= min
q1 ,q2 ,q3 ∈C6

D(q1‖μ) + D(q2‖μ) + D(q3‖π), (50)

where C6 �
{
(q1 , q2 , q3) : D(q1‖q2) > D(q3‖q2)

}
.

We then upper bound PS (F ) by using the Union Bound [25]
as follows:

PS (F ) ≤ PS (F1) + PS (F2)

≤ PS

⎛
⎝ ⋃

j∈S C

{
D(γj‖π̂) > D(γj‖μ̂)

}
⎞
⎠

+ PS

(⋃
i∈S

{
D(γi‖μ̂) > D(γi‖π̂)

}
)

≤ |S|(M − |S|)2PS

(
D(γj1 ‖γj2 ) > D(γj1 ‖γi)

)

+ |S|2(M − |S|)PS

(
D(γi1 ‖γi2 ) > D(γi1 ‖γj )

)
,

(51)

where j, j1 , j2 ∈ SC and i, i1 , i2 ∈ S. From Lemma 1, we
obtain

α7 � lim
n→∞−

1
n

log PS

(
D(γj1 ‖γj2 ) > D(γj1 ‖γi)

)

= min
q1 ,q2 ,q3 ∈C7

D(q1‖π) + D(q2‖π) + D(q3‖μ), (52)

where C7 � {(q1 , q2 , q3) : D(q1‖q2) > D(q1‖q3)}, and

α8 � lim
n→∞−

1
n

log PS

(
D(γi1 ‖γi2 ) > D(γi1 ‖γj )

)

= min
q1 ,q2 ,q3∈C8

D(q1‖μ) + D(q2‖μ) + D(q3‖π), (53)

where C8 �
{
(q1 , q2 , q3) : D(q1‖q2) > D(q1‖q3)

}
.

Due to the fact that the objective functions in (49) and (52)
can only be zero for the case q1 = q2 = π, q3 = μ, which is
not in the constraint sets C5 and C7 , respectively. The objective
functions in (50) and (53) can only be zero when q1 = q2 = μ,
q3 = π, which cannot meet the constraints in sets C6 and C8
either. Thus, we conclude that α5 , α6 , α7 , α8 > 0.

From the fact that limn→∞
log M (M−|S |)

n = 0, it then follows
that

α
(
δ

(1)
3

) ≥ min
{
α5 , α6 , α7 , α8

}
. (54)

From the above argument and Proposition 2, both the one-step
test δ

(1)
3 and the GL test δGL are exponentially consistent. Thus,

based on the same technique used in the proof of Theorem 2, we
establish the exponential consistency of the test δ

(�)
3 proposed

in Algorithm 3, for any � ≥ 1.
Finally, since each iteration has the time complexity O(M),

δ
(�)
3 which runs � iterations has time complexity O(M�).

APPENDIX D
PROOF OF THEOREM 4

The exponential consistency of δ
(1)
3 for the scenario where

the typical and outlying distributions form clusters can be es-
tablished using the same techniques as in Theorem 3. The major
difference between the proofs of Theorem 3 and Theorem 4 is
that here both the typical distributions and the outlying distri-
butions are distinct.
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Using the same events defined in Appendix C, the error prob-
ability of the one-step test δ

(1)
3 can be upper bounded by

e
(
δ

(1)
3

)
= PS

(
E ∪ F

) ≤ PS (E) + PS (F ). (55)

The first term on the right hand side can be bounded as,

PS (E)

≤ PS

(⋂
i∈S

Ai

)
+ PS

⎛
⎝ ⋂

j∈S C

Bj

⎞
⎠

≤ PS (Ai) + PS (Bj )

≤ (M − |S|)2 max
j1 ,j2 ∈S C

i∈S

PS (D(γj1 ‖γj2 ) > D(γi‖γj2 ))

+ |S|2 max
i1 ,i2 ∈S
j∈S C

PS

(
D(γi1 ‖γi2 ) > D(γj‖γi2 )

)
. (56)

From Lemma 1, we obtain

α9 � lim
n→∞−

1
n

log max
j1 ,j2 ∈S C

i∈S

PS

(
D(γj1 ‖γj2 ) > D(γi‖γj2 )

)

= min
j1 ,j2 ∈S C

i∈S

min
q1 ,q2 ,q3 ∈C9

D(q1‖πj1 ) + D(q2‖πj2 )

+ D(q3‖μi), (57)

where C9 �
{
(q1 , q2 , q3) : D(q1‖q2) > D(q3‖q2)

}
, and

α10 � lim
n→∞−

1
n

log max
i1 ,i2 ∈S
j∈S C

PS

(
D(γi1 ‖γi2 ) > D(γj‖γi2 )

)

= min
i1 ,i2 ∈S
j∈S C

min
q1 ,q2 ,q3 ∈C1 0

D(q1‖μi1 ) + D(q2‖μi2 )

+ D(q3‖πj ), (58)

where C10 �
{
(q1 , q2 , q3) : D(q1‖q2) > D(q3‖q2)

}
.

We then upper bound PS (F ) by using the Union Bound [25]
as follows,

PS (F )

≤ PS (F1) + PS (F2)

≤ PS

⎛
⎝ ⋃

j∈S C

{
D(γj‖π̂) > D(γj‖μ̂)

}
⎞
⎠

+ PS

(⋃
i∈S

{
D(γi‖μ̂) > D(γi‖π̂)

}
)

≤ |S|(M − |S|)2 max
j1 ,j2 ∈S C

i∈S

PS

(
D(γj1 ‖γj2 ) > D(γj1 ‖γi)

)

+ |S|2(M − |S|) max
i1 ,i2 ∈S
j∈S C

PS

(
D(γi1 ‖γi2 ) > D(γi1 ‖γj )

)
.

(59)

From Lemma 1, we obtain

α11 � lim
n→∞−

1
n

log max
j1 ,j2 ∈S C

i∈S

PS

(
D(γj1 ‖γj2 ) > D(γj1 ‖γi)

)

= min
j1 ,j2 ∈S C

i∈S

min
q1 ,q2 ,q3∈C1 1

D(q1‖πj1 ) + D(q2‖πj2 )

+ D(q3‖μi), (60)

where C11 �
{
(q1 , q2 , q3) : D(q1‖q2) > D(q1‖q3)

}
, and

α12 � lim
n→∞−

1
n

log max
i1 ,i2 ∈S
j∈S C

PS

(
D(γi1 ‖γi2 ) > D(γi1 ‖γj )

)

= min
i1 ,i2 ∈S
j∈S C

min
q1 ,q2 ,q3 ∈C1 2

D(q1‖μi1) + D(q2‖μi2) + D(q3‖πj),

(61)

where C12 �
{
(q1 , q2 , q3) : D(q1‖q2) > D(q1‖q3)

}
.

Note that the objective functions in (57) and (60) can only
be zero for the case q1 = πj1 , q2 = πj2 , q3 = μi , which is not
in the constraint sets C9 and C11 , due to our clustering assump-
tion (1). The objective functions in (58) and (61) can only be
zero when q1 = μi1 , q2 = μi2 , q3 = πj , which cannot meet the
constraints in sets C10 and C12 either. Thus, we conclude that
α9 , α10 , α11 , α12 > 0.

From the fact that limn→∞
log M (M−|S |)

n = 0, it follows

α
(
δ

(1)
3

) ≥ min
{
α9 , α10 , α11 , α12

}
. (62)
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[11] L. Xiong, B. Póczos, and J. Schneider, “Group anomaly detection using
flexible genre models,” in Proc. Adv. Neural Inf. Process. Syst., 2011,
pp. 1071–1079.

[12] Y. Li, S. Nitinawarat, and V. V. Veeravalli, “Universal outlier hypothesis
testing,” IEEE Trans. Inf. Theory, vol. 60, no. 7, pp. 4066–4082, Jul. 2014.



2128 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 67, NO. 8, APRIL 15, 2019

[13] Y. Bu, S. Zou, Y. Liang, and V. V. Veeravalli, “Universal outlying sequence
detection for continuous observations,” in Proc. IEEE Int. Conf. Acoust.,
Speech, Signal Process., 2016, pp. 4254–4258.

[14] S. Zou, Y. Liang, H. V. Poor, and X. Shi, “Nonparametric detection of
anomalous data streams,” IEEE Trans. Signal Process., vol. 65, no. 21,
pp. 5785–5797, Nov. 2017.

[15] S. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Inf. Theory,
vol. 28, no. 2, pp. 129–137, Mar. 1982.
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