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ABSTRACT

This paper applies statistical dependence measures to in-
terpret self-supervised learning (SSL). Conventional appli-
cations of measures like mutual information commonly use
separate procedures for feature extraction and dependence es-
timation, where the relationship between optimal features and
the strength of dependence is unclear. This causes limitations
in tasks requiring multivariate feature representations, partic-
ularly in SSL. The recently introduced multivariate measure,
functional maximal correlation, is a unified framework based
on orthonormal decomposition of density ratios, wherein the
spectrum and the bases become the measure and the features,
respectively. This paper proposes that features in SSL can
also be interpreted as basis functions of the density ratio. We
introduce the Hierarchical Functional Maximal Correlation
Algorithm (HFMCA), a theoretically justified approach that
ensures faster convergence, enhanced stability, and prevents
feature collapse by learning orthonormal bases as multivariate
features.

1. INTRODUCTION

Measures of statistical dependence have been instrumental in
learning features that maximize information transfer ([1, 2, 3,
4]), which has sparked a multitude of learning principles and
algorithms in machine learning ([5, 6, 7, 8, 9]). Improving
the diversity and interpretability of multivariate features is
important in numerous machine learning tasks, such as one-
shot learning, transfer learning, and especially self-supervised
learning (SSL) [10, 11, 12]. In this paper, we explore the
advances of using multivariate statistical dependence measures
for these tasks.

Conventional dependence measures such as mutual infor-
mation (MI) may encounter limitations in tasks that require
multivariate properties. Methods based on these measures
([6, 13, 14, 15, 16, 17, 18]) typically involve a three-step it-
erative process of projection, estimation, and maximization:
first, a network maps data to a feature space; second, a mutual
information estimator is optimized to ensure tight variational
bounds; and third, the feature extractor is optimized to maxi-
mize the estimated MI. The limitation lies in the gap between

feature extraction and dependence estimation being two sep-
arate procedures, conducted by two separate models, which
leaves the link between the optimal multivariate features and
the strength of dependence obscure.

The Multivariate Statistical Dependence (MSD) is a re-
cently introduced multivariate dependence measure based on
the concept of orthonormal decomposition of density ratios [19,
20, 21]. The spectrum in this decomposition is the defined
dependence measure, and the basis functions are the multi-
variate features. Together, they create the projection space
associated with the density ratio. The measure is accompanied
with the Functional Maximal Correlation Algorithm (FMCA),
which uses neural networks and log-determinant costs to learn
this decomposition directly from empirical data. This frame-
work unifies dependence measurement and feature learning
through density ratio decomposition, allowing the learning of
multivariate features that are theoretically orthonormal.

This concept may provide a new theoretical approach
for explaining SSL: the optimal multivariate features learned
through SSL can be interpreted as the basis functions of the
density ratio induced by a corresponding probabilistic sys-
tem. Upon formulating the probabilistic system, we propose
the Hierarchical Functional Maximal Correlation Algorithm
(HFMCA), an algorithm for multiview self-supervised learn-
ing that explores the hierarchical relationship between data and
their augmentations. HFMCA offers faster convergence, stabil-
ity that prevents feature collapse, and a theoretical foundation
for interpretability.

2. PRELIMINARY: DENSITY RATIO
DECOMPOSITION

Spectrum, basis functions, and density ratios. A unique
characteristic of the multivariate dependence measure is
its direct application of spectral decomposition to the den-
sity ratio [21]. Given any two random processes X and Y,
with a joint distribution p(X,Y ) and the marginal product
p(X)p(Y ), the statistical dependence measure is defined via
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an orthonormal decomposition:

ρ :=
p(X,Y )

p(X)p(Y )
=

∞∑
k=1

√
σkϕk(X)ψk(Y ),

EX[ϕk(X)ϕk′(X)] = EY[ψk(Y)ψk′(Y)] =

{
1, k = k′

0, k ̸= k′
.

(1)
Each decomposition component has a unique role: the spec-
trum measures multivariate dependence, the bases serve as
feature projectors, and the kernel-associated density ratio pro-
vides a metric distance. The task of modeling dependence
thus becomes modeling this projection space, leading to the
proposal of the Functional Maximal Correlation Algorithm
(FMCA).

There are several important properties of the spectrum.
First, all eigenvalues are bounded by 1. The largest eigenvalue
is a constant 1 (i.e., σ1 = 1), and the two variables are strictly
independent if and only if all other eigenvalues are zero (i.e.,
σ2 = σ3 = · · · = 0).

Neural networks implementation. When dealing with em-
pirical data and lacking the knowledge of pdf , spectral decom-
position can be achieved through optimization. The empirical
studies suggest a log-determinant-based cost function, opti-
mized via paired neural networks, offers superior stability.
Using two neural networks, fθ : X → RK and gω : Y → RK

that map realizations of X and Y respectively, each to a K-
dimensional output space, we compute the autocorrelation
(ACFs) and crosscorrelation functions (CCFs) defined as fol-
lows:

RF = EX[fθ(X)f⊺θ (X)], RG = EY[gω(Y)g⊺
ω(Y)],

PFG = EX,Y[fθ(X)g⊺
ω(Y)], RFG =

[
RF PFG

P⊺
FG RG

]
.

(2)
FMCA defines an optimization problem that minimizes the
log-determinant of the marginal ACFs RF and RG for output
orthonormality, while maximizing the log-determinant of the
joint ACF RFG to parallelize two projection spaces. The
problem is formulated as follows:

min
θ,ω

r(fθ,gω) := log detRFG − log detRF − log detRG.

(3)
Upon reaching optimality, normalization schemes are em-
ployed to network outputs. Theoretically, the objective func-
tion effectively captures the leading eigenvalues of the spec-
trum, while the neural networks, viewed as multivariate func-
tion approximators, approximate leading basis functions.

Linking dependence measurement and feature learning.
Applying FMCA for feature learning is direct: formulate the
joint density and marginal products, initiate nonlinear mappers,
and minimize costs. This yields a multivariate dependence
measure and a theoretically-grounded feature projector that

together decompose the density ratio. These features naturally
display orthonormality, ensuring diversity, which is vital for
many learning tasks. This paper spotlights the potential of this
property in self-supervised learning that exhibit hierarchical
structures. We demonstrate that learning dependence struc-
tures from hierarchies is crucial for self-supervised learning
and can be accomplished with the FMCA.

Costs, spectrum, and dependencies. The spectrum’s eigen-
values range from 0 to 1. The optimal cost approximates their
aggregation r∗ =

∑K
k=1 log(1 − σk). Dependence can be

evaluated using both the spectrum and cost, where a lower cost
and higher eigenvalues indicate stronger dependence.

Normalizations after training. Note that it requires two
additional normalization steps to map the outputs of two neural
networks, fθ and gθ, to the basis function, {ϕk} and {ψk} of
the density ratio. The first step is to enforce orthonormality,
using the ACFs RF and RG of the marginal. After training,
we simply normalize the outputs using

fθ = R
− 1

2

F fθ, gω = R
− 1

2

G gω. (4)

which guarantees orthonormality of the functions fθ and gω .
The second step is to enforce equilibrium, using the eigen-

expansion:

PFG = E[fθ(X)gω
⊺(X)], PFGP

⊺
FG = QFΣQF

⊺,

P
⊺
FGPFG = QGΣQG

⊺, Σ =

σ1 . . .
σK

 . (5)

The obtained eigenvalues {σk} will be the eigenvalues, and
the normalized functions

f̂θ = QT
F fθ, ĝω = QT

Ggω. (6)

will match the eigenfunctions from the set {ϕk} and {ψk}. By
minimizing the cost function, the goal of our algorithm is to
identify the dominant eigenvalues in the eigenspectrum, such
that the neural networks to converge to the leading eigenfunc-
tions. As a result, an accurate approximation of the density
ratio can be achieved when K and L are sufficiently large.

3. DENSITY RATIO DECOMPOSITION FOR SSL

We explore the potential of framing SSL as a statistical de-
pendence measurement problem. Regardless of the specified
protocols, augmentations of an image describe the common
source object. This relationship implies statistical dependence.

Consider an unaugmented image X ∼ P(X), with P(X)
being the given data distribution prior to any augmentation,
which is the source data distribution that we are presented with.
The augmentation protocols can be modeled as a transforma-
tion function T (X; v), which takes an image X ∈ X and a
positive integer index v ∈ V representing a specific protocol,
and produce an augmented version of the image. The set V is
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a subset of positive integers V ⊂ Z+, and its cardinality |V| is
the total number of specified protocols. The augmented images
will have a distribution P(Y), assuming they are modeled as a
random process Y ∈ Y .

For simplicity, consider pdfs exist for all defined distri-
butions. We propose that the augmentation procedure can be
modeled as a conditional pdf

p(Y |X = X) =
1

|V|
∑
v∈V

1{Y = T (X; v)}, (7)

by applying a counting measure to all possible augmented ver-
sions of a given image X . Given X ∼ P(X), augmentations
of this image can be sampled from this conditional distribution
as Y ∼ P(Y|X = X). The marginal p(Y) is obtained by
marginalizing over all images in the dataset

p(X = X,Y = Y ) = p(X) · 1

|V|
∑
v∈V

1{Y = T (X; v)},

p(Y = Y ) =

∫
X
p(X = X,Y = Y )dX.

(8)
Simplify notations to be p(X,Y ), p(X) and p(Y ). Natu-
rally, we choose to decompose ρ(X,Y ) := p(X,Y )

p(X)p(Y ) =∑∞
k=1

√
σkϕk(X)ψk(Y ), i.e., the density ratio induced by

the joint distribution between the original image and its aug-
mentations.

The remaining question becomes constructing the ACFs
and CCFs in the log-determinant cost (3) and apply optimiza-
tion. Assume that two neural networks fθ : X → RK and gω :
Y → RK are given. The two ACFs RF = EX[fθ(X)f⊺θ (X)]
and RG = EY[gω(Y)g⊺

ω(Y)] can be written and estimated
empirically by their definitions.

Multiview system. Observe that sampling from this joint
is to first sample an image in the dataset, then sample an
augmentation from the conditional, indicating that the CCF can
also be estimated in a similar way, in terms of the conditional:

PFG = EX,Y[fθ(X)g⊺
ω(Y)]

=

∫∫
p(X)p(Y |X = X)fθ(X)g⊺

ω(Y )dXdY

=

∫
p(X)fθ(X)EY[g⊺

ω(Y)|X = X]dX.

(9)

Therefore, a proper approach is to first estimate the conditional
expectation EY[g⊺

ω(Y)|X = X], by averaging over multiple
augmentations of each individual image, then estimate the
CCF by averaging over all images. This estimation of the
conditional mean, which uses multiple views of an image
similar to [22, 23], differs from the conventional contrastive
learning approach that uses only two views.

To frame this formally, we introduce a series of L i.i.d.
categorical r.v., V = {v1, · · · ,vL}, denoting the execu-
tion of L augmentations. For each image, a set of in-
dices {v1, · · · , vL} ⊂ V is sampled, generating L views

T (X;V ) = {T (X; v), v ∈ v1, · · · , vL}. Then the condi-
tional mean can be estimated by averaging over these L views:
EY[gω(Y)|X = X] ≈ 1

L

∑L
l=1 gω(T (X; vl)). Then the

CCF is estimated by averaging over all images.

Hierarchical structure. The second observation is that since
augmentations, such as patches, are often part of the origi-
nal image, this implies a hierarchical relationship that allows
the two parameterized networks fθ and gω to have shared
structures. Instead of using two separate networks, the model
topology can be simplified to be a cascade of the backbone
f
(1)
θ and the projection head f

(2)
θ as approximators for basis

functions. The backbone f
(1)
θ is first applied to the L augmen-

tations of an image, extracting L low-level features Z(1)
l , each

with K dimensions. These L features are then concatenated
in the feature channel, acting as inputs to the projection head,
and producing the high-level feature Z(2). The mapping to
Z(1) and Z(2) will be considered function approximators fθ
and gω .

Combining the two modifications, we introduce HFMCA
for SSL as follows.

Proposition 1. Denote the feature maps produced by the
backbone and the projection head as Z(1) and Z(2), respec-
tively. Also assign L auxiliary indices to Z(1) as {Z(1)

l , l =
1, · · · , L}, corresponding to L augmentations of an image.
HFMCA solves the optimization problem:

R1 = E[Z(1)Z(1)⊺], R2 = E[Z(2)Z(2)⊺],

P1,2 =
1

L
E[

L∑
l=1

Z
(1)
l Z(2)⊺], R1,2 =

[
R1 P1,2

P⊺
1,2 R2

]
,

min
θ
rH := log detR1,2 − log detR1 − log detR2.

(10)

By the theory of FMCA, the objective function reaches the
leading eigenvalues of the density ratio, with neural networks
reaching the leading orthonormal basis functions upon nor-
malizations.

This proposition described the cost and optimization prob-
lem for our algorithm, which involves constructing the cost
function rH(Z(1),Z(2)) and employing the HFMCA for min-
imization. This procedure measures statistical dependence
between two hierarchical levels and, most importantly, ex-
tracts multivariate features that are theoretically orthonormal.

Full algorithm of HFMCA. Now that we have introduced the
cost function, we now describe the full algorithm. For SSL,
we minimize the cost rH(T (X;v), T (X;V)) to learn diverse
features. Unlike conventional methods optimizing similarity
measures between augmentation pairs, HFMCA uses an ad-
ditional network after the backbone. The backbone CNN is
first applied to the L augmentations of a source image, extract-
ing L feature maps Z

(1)
l of K dimensions. These L feature
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Figure 1: Illustration of
HFMCA’s cost: Each element
of Z1 is a feature of an aug-
mentation, produced by the
backbone. These features are
concatenated as inputs to the
projection head (LS), produc-
ing the feature Z2. Then, R1,
R2, and P1,2 are constructed,
and HFMCA is applied.

maps are then concatenated in the feature channel, serving as
inputs to the additional network and yielding the higher-level
features Z(2). Minimizing the log-determinants of marginal
ACFs, R1 and R2, ensures orthonormality. Meanwhile, max-
imizing the joint ACF R1,2 align the two sets of bases as
parallel as possible. Solving this min-max problem effectively
extracts shared information between two levels. HFMCA of-
fers orthonormal features as the density ratio’s basis functions,
ensuring diversity. The algorithm’s diagram is in Figure 1, and
its pseudocode can be found in Algorithm 1.

Post-training normalization. As discussed in the preliminary,
extra normalization steps need to be applied to the network
outputs to obtain the eigenfunctions. For simplicity, denote the
mapping from an augmentation to the outputs of the backbone
as f , and the mapping from the original image to the outputs
of the projection head as g. After training, the first step is
to enforce the orthonormality with f = R

− 1
2

1 f ,g = R
− 1

2
2 g.

The second step is to apply the singular-value decomposition
such that the functions are invariant to the conditional mean
operator, which follows

E[f g⊺] = ÛΣ̂
1
2 V̂⊺, Σ̂ = diag([σ̂1, · · · , σ̂K ]),

f̂ = Ûf , ĝ = V̂⊺g.
(11)

After the normalization, we obtain the leading K eigenvalues
{σ̂k} and the corresponding basis functions {f̂ , ĝ}. Since they
form a decomposition of the density ratio, the approximated
density ratio has the form

ρ̂1,2 = f̂⊺Σ̂
1
2 ĝ ≈ p(X,Y )

p(X)p(Y )
, (12)

where X and Y are defined with the augmentation procedure
discussed before. The full procedure will produce the spec-
trum, the basis functions, and the approximated density ratio
ρ̂1,2. The algorithm for the test is illustrated in Algorithm 2.

Gradient estimation. In our implementation, an adaptive filter
can be added for gradient estimation, similar to a conventional
Adam optimizer. Note that the gradient of rH has the form

∂rH
∂θ

= Tr((R1,2)
−1 ∂R1,2

∂θ
)− Tr((R1)

−1 ∂R1

∂θ
)

−Tr((R2)
−1 ∂R2

∂θ
).

(13)

Thus, we can use adaptive filters to estimate the three ACFs,
and substitute the argument within the inverse function with
these estimated values. With this, we have introduced the final
algorithm of using HFMCA for SSL.

Algorithm 1 HFMCA for SSL - Training Procedure

1: Choose the number of views L, the learning rate η, and
initialize CNN f

(1)
θ , f

(2)
θ .

2: while convergence is not reached do
3: Sample a batch of images X.
4: Create L augmentations of X, generating

X1,X2, . . . ,XL.
5: Calculate Z

(1)
l = f

(1)
θ (Xl) for all l, using the back-

bone.
6: Concatenate feature maps as inputs to the projection

head: Z(2) = f
(2)
θ ([Z

(1)
1 ,Z

(1)
2 , · · · ,Z(1)

L ]⊺).
7: Construct R1, R2, R1,2 using Equation (10).
8: Apply the adaptive filter, if needed.
9: Compute the gradient using Equation (13).

10: Update using SGD: θ ← θ − η · ∂rH/∂θ.
11: end while

Algorithm 2 HFMCA for SSL - Test Procedure

1: Denote f and g as mappings from the original image to
projection head outputs and from augmentation to back-
bone outputs, respectively.

2: Re-estimate R1, R2, P1,2, R1,2 with the full training set
samples.

3: Perform eigendecomposition: R
− 1

2
1 P1,2R

− 1
2

2 =

ÛΣ̂
1
2 V̂⊺.

4: Normalize outputs: f = R
− 1

2
1 f ,g = R

− 1
2

2 g.
5: Normalize outputs: f̂ = Ûf , ĝ = V̂⊺g.
6: Obtain eigenvalues: Σ̂.
7: Obtain eigenfunctions: f̂ and ĝ.
8: Calculate density ratio: ρ̂1,2 = f̂⊺Σ̂

1
2 ĝ.

9: For test samples, use f̂ as feature and perform K-Nearest
Neighbors (KNN).

4. EXPERIMENTS

In this section, we show that HFMCA exhibits faster conver-
gence, higher accuracy, and improved stability in SSL. Our
dependence measure can also serve as a quality indicator for
the augmentation protocol, independently of classification ac-
curacy.

Regularization hyperparameter. Each time we compute
the inverse of any ACFs (e.g., gradient estimation in Equa-
tion (13)), similar to the pseudo-inverse, we add a small diag-
onal matrix, scaled by a regularization parameter, denoted as
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Method Heads CIFAR10 CIFAR100

Epoch 20 Epoch 200 Epoch 800 Epoch 20 Epoch 200 Epoch 800

Methods with two views
MoCo [24] 128 57.2 83.8 90.0 22.3 45.7 69.8
SimCLR [11] 128 46.7 82.2 87.5 19.6 43.9 65.7
Barlow Twins [25] 2048 45.7 83.5 85.7 28.1 47.1 70.9
SimSiam [26] 2048 50.5 83.7 90.0 22.5 39.9 66.0
VICReg [27] 2048 44.8 81.2 90.2 20.3 37.8 68.5
VICRegL [12] 2048 43.2 78.7 89.7 21.5 41.2 67.3

Methods with multiple views
FastSiam [22] 2048 76.8 87.9 90.1 45.8 62.2 69.9
HFMCA 128 81.8 89.3 90.7 47.5 67.6 70.3

Table 1: Classification accuracy on CIFAR10 and CIFAR100 highlights HFMCA’s effectiveness. HFMCA converges fastest
among all methods, retaining near-optimal accuracy.

Fig. 2: The learning dynamics of costs (dependence level) are displayed for five distortion strengths across three protocols.
The arrow’s direction indicates an increase in distortion strength. A lower cost value implies a higher dependence level. The
figure implies that as distortion strength increases, the dependence level decreases. Even in extreme cases, a consistent level of
dependence remains, intrinsic to the dataset.

Strength A (%) C

0 24.8 −30.4
0.25 54.5 −26.1
0.5 67.7 −25.4
0.75 71.2 −21.9
1 69.9 −15.1

(a) Crop Distortion

Strength A (%) C

0 49.0 −20.4
0.25 69.6 −18.8
0.5 71.0 −17.5
0.75 70.6 −15.7
1 70.8 −15.0

(b) Color Jitters

Strength A (%) C

0 61.2 −18.1
0.25 71.2 −17.4
0.5 70.4 −17.3
0.75 71.4 −17.2
1 70.7 −17.1

(c) Grey Scale

Table 2: A comparison of classification accuracy (A) and costs (C) across three protocols. An increase in distortion strength leads
to decreased dependence but improves classification accuracy. The external costs never retain zero in all scenarios, suggesting an
intrinsic level of dependence within the dataset.

λI. This ensures the invertibility of the matrices. We found
this constant to be important, and it may impact the learned
spectrum. To achieve optimal performance in SSL, we select
λ = 0.1.

Fast convergence in self-supervised learning. Our HFMCA
model exhibits faster convergence and superior accuracy in
SSL, as shown in Table 1. We compared its performance
with multiple benchmark models on CIFAR10 and CIFAR100,
with the max accuracy achieved over 20, 200, and 800 epochs
reported, where HFMCA consistently outperformed them. All
experiments use a consistent setup: a ResNet-18 backbone,

batch size of 64, SGD optimizer, a learning rate of 0.06, and
momentum of 0.9, following benchmark settings. We use
standard SimCLR protocols [11] for augmentation and apply
a KNN to embedded training images.

In HFMCA, for a batch of 64 images, we generate 128-
dimensional feature maps for L = 9 distinct augmentations
per image using a ResNet-18 backbone. These feature maps
are then reshaped into a 3 × 3 grid, forming a tensor of size
(64, 128, 3, 3) which is fed into a 3-layer CNN, creating a 128-
dimensional feature per source image. The cost is constructed
following Proposition 1 and Fig. 1, while accuracy is evaluated
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via KNN on the final layer of the ResNet-18 backbone. We
compare HFMCA with a varity of standard baselines, and
HFMCA offers the fastest convergence and highest accuracy.

Table 1 highlights the benefits of shifting from the conven-
tional similarity-contrastivity model to HFMCA’s dependence-
orthonormality framework. HFMCA promotes feature diver-
sity via log-determinant-based cost functions, supported by
orthonormal decompositions. Basically, it reformulates the
task from contrasting two views to the measurement of statisti-
cal dependence among L distinct views, and results in more
efficient training.

Dependencies versus augmentation protocols. HFMCA’s
strength as a statistic dependence measure is demonstrated
through varying augmentation protocols. Our first observation
is the impressive stability of HFMCA across all tests. We
observe no occurrence of feature collapse, even under extreme
augmentations described later. Second, the dependence mea-
surement provides a novel indication for evaluating the quality
of augmentation protocols, independent of classification accu-
racy.

Notably, even with strong augmentation, some level of
dependence among views persists. We consistently observe a
decrease in dependence level as we enrich the augmentation.
The default augmentations for CIFAR10 [11] include random
crops, color jitters, and gray scales. We test five distortion
strengths across these three protocols. Each protocol is tested
individually, keeping the other two at default values. Random
crop strength varies from no cropping at all to the sampling
and resizing of any patch from 1 × 1 to 32 × 32 as inputs.
Color jitter strength refers to the intensity of distortions in
brightness, contrast, saturation, and hue. Gray scale strength
is the likelihood of images converting to gray scales, with the
maximum strength making all images colorless.

Fig. 2 shows training dynamics of the external cost as the
dependence level, indicating that random crops impact the
most, followed by color jitters, and gray scale. Increased dis-
tortion strength reduces dependence level (increases costs),
but never reaches strict independence. Intriguingly, even in
extreme cases, the learning settles at a certain level of de-
pendence intrinsic to the dataset, which can be interpreted as
the intrinsic dimension of the data set. Modeling this intrinsic
level of dependence, which is unaffected by the augmentation’s
richness, can be fundamental to self-supervised learning.

Table 2 further supports our argument by showing the
classification accuracy (A) and external costs (EC) for these
experiments. The results further support HFMCA’s robustness,
showing no major accuracy drop or feature collapse with in-
creased distortion. A decrease in external costs corresponds
to an increase in classification accuracy. This consistency sug-
gests our dependence measure’s potential for evaluating the
quality of different augmentation protocols.

Learning dynamics of the eigenspectrum. Finally, we visual-
ize the eigenspectrum’s learning curve in the following figure.

The displayed learning dynamics reveal additional insights.
Note that in the heatmap, color intensity represents eigenvalue
magnitude. Each row of the heatmap represents one of the 128
eigenvalues, showing how each eigenvalue is being maximized.
Upon observing the spectrum, we notice several properties:

• The eigenvalues are all bounded by 1, with the largest eigen-
value being 1, matching the theoretical property and show-
casing the stability of HFMCA;

• The eigenvalues appear to converge sequentially, from the
largest to the smallest, with an eigenvalue starting to maxi-
mize only after the previous one has almost converged and
stabilized;

• The number of positive eigenvalues may indicate the
dataset’s intrinsic complexity. The figure suggests po-
tential redundancy in the feature dimensions, and this
spectrum could guide the selection of optimal network
output dimensions.

Fig. 3: Visualizing the eigenspectrum learning dynamics: The
heatmap’s color intensity represents the eigenvalue magnitude.
Each row shows the maximization of one of the 128 eigenval-
ues, and each column displays one of the 104 iterations. All
eigenvalues in the spectrum are bounded by 1 and converge
sequentially from largest to smallest. The spectrum potentially
represents the dataset’s intrinsic dimensions.
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6. DISCUSSION

This paper provides a theoretical interpretation of SSL features
as orthonormal basis functions of the density ratio. We propose
HFMCA for learning SSL features with fast convergence and
enhanced stability. In the appendix, we further discuss how
this analysis extends to internal features to provide model
interpretabilities. Our study has not yet incorporated local-
level supervision, such as patch augmentation [23], which can
be explored in future work.
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