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Abstract—Learning a fair predictive model is crucial to
mitigate biased decisions against minority groups in high-stakes
applications. A common approach to learn such a model involves
solving an optimization problem that maximizes the predictive
power of the model under an appropriate group fairness constraint.
However, in practice, sensitive attributes are often missing or
noisy resulting in uncertainty, and solely enforcing fairness
constraints on uncertain sensitive attributes can fall significantly
short of achieving the level of fairness without uncertainty. To
understand this phenomenon, we consider the problem of fair
learning for Gaussian data and reduce it to a quadratically
constrained quadratic problem (QCQP). To ensure a strict fairness
guarantee given uncertain sensitive attributes, we propose a robust
QCQP, and characterize its solution with an intuitive geometric
understanding. When uncertainty arises due to limited labeled
sensitive attributes, our analysis identifies non-trivial regimes
where uncertainty incurs no performance loss while continuing
to guarantee strict fairness. As an illustrative example of our
analysis, we propose a bootstrap-based algorithm that applies
beyond the Gaussian case. We demonstrate the value of our
analysis and algorithm on synthetic as well as real-world data.

I. INTRODUCTION

Achieving fairness in predictive modeling, whether in
classification or regression, is crucial to avoid discriminatory
decisions against marginalized groups. Although various
problem formulations exist for ensuring fairness in model
training, a widely adopted approach is to formulate an
optimization problem that maximizes the model’s predictive
power while satisfying a group fairness constraint. The
notion of group fairness [1] stipulates a certain (conditional)
independence requirement involving the model prediction
and the sensitive attribute. Then, the goal is to minimize
the prediction loss while ensuring that the fairness loss,
which measures the degree of violation of the independence
requirement, is less than a pre-defined tolerance level ϵ, i.e.,

minPrediction Loss s.t. Fairness Loss ≤ ϵ. (1)

Typically, it is assumed that the learner has access to true
sensitive attributes for every sample in training, but in reality,
labeled sensitive attributes are often missing or noisy. For
instance, labeling sensitive attributes may require additional
annotation of existing datasets for which such labels were not
originally collected. Even if available, the sensitive attribute
information can be uncertain due to various reasons, such as
noisy or unreliable responses from survey participants due to
fear of disclosure or discrimination [2]. Moreover, privacy/legal
regulations limit the use of labeled sensitive attributes, such as

Fig. 1: Error vs. fairness on Crime data for oracle and baseline
methods that enforce fairness using true and uncertain sensitive
attributes, respectively. The baseline falls short of achieving
the same range of fairness as the oracle.

race or gender, which are protected by laws, e.g., EU’s General
Data Protection Regulation or California’s Consumer Privacy
Act. In such cases, privatized sensitive attributes, which are
obtained by adding noise, may be the only available option.

In such scenarios, estimating the fairness loss in (1) using
uncertain sensitive attributes, as if correct, can lead to a model
that does not accurately capture target fairness. Figure 1 shows
the trade-off between prediction (measured by mean squared
error) and fairness (measured as violation of independence
between predictions and sensitive attributes) obtained by
varying ϵ in (1) for Crime data [3]. The oracle (in red) with
access to true sensitive attributes during training, denoted by
Doracle, enforces the constraint: Fairness Loss(Doracle) ≤ ϵ,
and covers a wide range of fairness levels. By contrast,
the baseline (in orange) with access to sensitive attributes,
corrupted with Gaussian noise, during training, denoted by
Duncertain, enforces the constraint: Fairness Loss(Duncertain) ≤ ϵ,
but cannot achieve fairness below a threshold, i.e., it provides
less control over attainable fairness compared to the oracle.

Contributions. We propose a method to learn predictive models
with uncertain sensitive attributes, targeting applications where
violating a fairness threshold incurs a significant cost.
1. We formulate the problem of fair learning for Gaussian data,

with a focus on the independence notion of fairness. Using
the principle of information bottleneck, we reduce a specific
instance of this problem to a quadratically constrained
quadratic problem (QCQP) when the true sensitive attributes
are available. Given the uncertainty in sensitive attributes, we
robustify the QCQP to provide a strict fairness guarantee and
fully characterize the solution of the robust QCQP. Notably,
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in certain cases of randomly missing sensitive attributes,
our robust QCQP can achieve strict fairness without any
performance loss, which we refer to as free fairness.

2. We illustrate the usefulness of our analysis by proposing
Bootstrap-S, an algorithm that uses a bootstrap
approach to impose S additional constraints to the
optimization in (1), for some parameter S. For i ∈ [S],
constraint i requires Fairness Loss(Duncertain

i ) ≤ ϵ, where
Duncertain

i is a collection of a fixed number of random
subsamples of the uncertain sensitive attributes Duncertain,
i.e., Bootstrap-S aims to

min Prediction Loss s.t.

Fairness Loss(Duncertain) ≤ ϵ and,

Fairness Loss(Duncertain
i ) ≤ ϵ for all i ∈ [S].

3. Bootstrap-S is applicable to various settings, e.g.,
classification and regression tasks, discrete and continuous
sensitive attributes, and group fairness notions of
independence and separation. We empirically show that
Bootstrap-S achieves fairness comparable to the oracle
without much sacrificing the predictive power of the baseline
across various synthetic and real data.

Here, we focus on regression tasks, continuous sensitive
attributes, independence notion of fairness, and uncertainty
due to noise as well as missingness. In the longer version of
this work [4], we also consider classification tasks, discrete
sensitive attributes, and the separation notion of fairness. We
defer all the proofs to this longer version of our work.

Related work. Several approaches have been proposed to
handle noisy sensitive attributes [5, 6, 7, 8, 9, 10]. However,
they focus solely on classification with discrete sensitive
attributes and assume a particular noise model, e.g., the flipping
noise model where the true sensitive attribute is flipped with
some fixed probability. By contrast, our approach applies to
regression and continuous sensitive attributes. Moreover, we
do not consider a specific noise model.

II. PROBLEM FORMULATION

Suppose x represents d-dimensional input features defined
on the alphabet X , while y and e denote 1-dimensional target
and sensitive attribute defined on the alphabets Y and E ,
respectively. Fair supervised learning seeks to find a predictor
f : X → Y that (a) accurately estimates the target variable
for new input features and (b) avoids discrimination based
on the sensitive attribute. To achieve this, we are given (a) a
loss function ℓ : Y ×Y → R+, where ℓ(y , f(x)) measures the
disagreement between the target variable and its prediction,
and (b) a fairness measure Φ : Y × Y × E → R+, where
Φ(y , f(x), e) measures the level of discrimination of f . Given
a fairness target ϵ ≥ 0 and a class of predictors F , the goal is
to find an f ∈ F that minimizes the expected loss ℓ, subject
to the fairness measure Φ being small:

f∗ ∈ argmin
f∈F

E
[
ℓ(y , f(x))

]
s.t. Φ(y , f(x), e) ≤ ϵ. (2)

For ease of notation, hereon, we define f ≜ f(x). The choice
of ℓ depends on the specific alphabet Y . In this work, we
focus on regression tasks, where Y is R, and we use the mean
squared error (MSE) loss, defined as ℓ(y , f) = (y − f)2.

Choice of Φ. To design Φ, it is important to establish what is
meant by a perfectly fair predictor, i.e., ϵ = 0 in (2). Typically,
perfect fairness is described in terms of statistical independence.
The independence fairness criterion, also called demographic
parity, demands that f ⊥⊥e, meaning that predictions should
not reveal any information about sensitive attributes.

Achieving perfect fairness is not feasible when learning
a predictor from finite training samples [11]. In practice,
one often works with measures of approximate fairness by
choosing ϵ > 0 in (2), and varying ϵ to find a balance between
fairness and accuracy. As perfect fairness measures assert that
certain random variables should be independent, a natural
way to measure approximate fairness is to use divergence
that measures the degree of independence between these
variables. Recently, χ2-divergence has emerged as an effective
measure of approximate fairness [12]. Following this, we adopt
χ2-divergence as our measure of the degree of independence,
i.e., Φ(y , f, e) = χ2 (pe,f ∥pepf ) where pe,f , pe , and pf are
marginal distributions of (e, f), e, and f , respectively. However,
when the data is Gaussian, we use a related but different
analytically convenient divergence (introduced later).

A. Uncertain sensitive attributes

Typically, N independent and identically distributed (i.i.d.)
samples of (x, y , e) are assumed to be available, denoted by
D(o) ≜ {x(i), y (i), e(i)}i∈[N ]. Then, the objective in (2) is
estimated using the subset D(p) ≜ {x(i), y (i)}i∈[N ] while the
constraint is estimated using an appropriate subset of D(o)

depending on the functional form Φ. We denote these estimates
by ED(p)

[
ℓ(y , f)

]
and ΦD(o)(y , f, e). We assume that N is

sufficiently large and ignore any errors in these estimates to
focus on errors due to uncertainty in sensitive attributes.

When dealing with uncertain sensitive attributes, access to
D(o) may not be possible. To account for such uncertainty,
we assume access to D(p) as well as n ≤ N (potentially
noisy) labeled sensitive attributes D(u) ≜ {x(i), y (i), ê(i)}i∈[n].
For i ∈ [N ], if ê(i) ̸= e(i), then sensitive attribute ê(i) is
noisy. Further, if n < N , then sensitive attributes {e(i)}Ni=n+1

are missing. Then, the goal of fair learning with uncertain
sensitive attributes is to solve the optimization in (2) with
access to D(p) and D(u). While this is an intuitively appealing
goal, simply computing the constraint in (2) with D(u) may
be sub-optimal as discussed in Section I. That is, a predictor
f satisfying ΦD(u)(y , f, e) ≤ ϵ may not necessarily satisfy
ΦD(o)(y , f, e) ≤ ϵ. To address this issue and gain some insight,
we first consider the case where (x, y , e, f) is jointly Gaussian.

B. Gaussian setting

For ease of exposition, consider zero-mean Gaussian
variables and assume that px,y is known or can be learned
from D(p). Let the predictor f be such that f = E[y |u] where
u ≜ u(x) is a Gaussian representation of the features chosen
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such that u ⊥⊥e. Then, f ⊥⊥e follows from the data processing
inequality. We measure the degree of independence between u
and e using D-divergence, a second-order approximation of
Kullback–Leibler divergence, introduced by [13].

Definition 1. The D-divergence between zero-mean Gaussian
random vectors v ∼ pv = N (0,Σv) and w ∼ pw = N (0,Σw),
with ||| · |||F denoting the Frobenius norm, is given by

D(pv∥pw) ≜
1

2
|||Σ−1/2

w (Σv −Σw)Σ
−1/2
w |||2F.

For these choices, the optimization in (2) reduces to learning
a Gaussian variable u such that

u∗ ∈ argmin
u : D(pe,u∥pepu)≤ϵ

E
[
(y − E[y |u])2)

]
. (3)

Next, to reformulate (3) into a quadratically constrained
quadratic program (QCQP), we utilize the notion of canonical
correlation matrices (CCMs) defined by [13].

Definition 2. The canonical correlation matrix (CCM) between
jointly Gaussian random vectors v ∼ N (0,Σv) and w ∼
N (0,Σw) is given by bvw ≜ Σ

−1/2
vv ΣvwΣ

−1/2
ww , where Σvw

is the cross-covariance matrix between v and w.

The D-divergence is conveniently represented by CCMs.
By drawing connections to information bottleneck and
semi-definite programming [14], we show an equivalence
between (3) and a QCQP that uses CCMs.

Theorem 1 (Gaussian Fair Learning ⇐⇒ QCQP). The
optimization problem in (3) is equivalent to

max
a∈Bd(0,1)

〈
a,byx

〉2
s.t.

〈
a,bex

〉2 ≤ ε, (4)

where Bd(0, 1) denotes the d-dimensional ℓ2 ball centered at
0 with radius 1, ⟨·,·⟩ denotes the inner product, and a plays
the role of bux.

We note that a in (4) has the same dimension as x, i.e., d.
Next, we show that any d-dimensional QCQP in (4) can be
mapped to a 2-dimensional QCQP. In particular, we show that
the projection of any a ∈ Bd(0, 1), satisfying the constraint in
(4), onto the subspace spanned by byx and bex preserves the
value of the objective and continues to satisfy the constraint.

Proposition 1 (d = 2 suffices for QCQP). An optimal solution
a⋆ of the QCQP in (4) lies in the subspace spanned by the
vectors byx and bex.

In the longer version [4], we also characterize an optimal
a⋆ in (4) as a function of byx, bex, and ε using the resulting
geometry for d = 2. Theorem 1 shows that the uncertainty in
the canonical correlation matrix bex sufficiently captures the
uncertainty in sensitive attributes, which we explore next.

III. ANALYSIS

In this section, we provide a characterization of fair learning
for Gaussian data, given some uncertainty in sensitive attributes.
Specifically, we study how to robustify the QCQP in (4) to
ensure a strict fairness guarantee with high probability. Then, to

understand how this robustification affects the optimal objective
and to reach a computationally inexpensive robust QCQP, we
perform a series of constraint relaxations.

A. Robust QCQP

Let b̂ex be an estimate of bex, say obtained from D(u),
such that ∥bex − b̂ex∥2 ≤ τ (with probability 1− δ), for some
τ ≥ 0,1. We denote this by bex ∈ Bd(b̂ex, τ). To achieve
fairness as in (4) with probability 1 − δ, in the worst case,
⟨a,b⟩2 ≤ ε should hold for all b ∈ Bd(b̂ex, τ). Then, the
following robust optimization maximizes the desired objective
while achieving fairness as in (4) (with probability 1 − δ)
without the precise knowledge of bex:

max
a∈Bd(0,1)

⟨a,byx⟩2 s.t. ⟨a,b⟩2≤ ε, ∀b ∈ Bd(b̂ex, τ). (5)

Next, similar to Proposition 1, we show that any d-dimensional
QCQP in (5) can be mapped to a 2-dimensional QCQP.

Proposition 2 (d = 2 suffices for robust QCQP). An optimal
solution a⋆ of the robust QCQP in (5) lies in the subspace
spanned by the vectors byx and b̂ex.

B. Relaxed Robust QCQP

Now, to characterize the solution of the robust QCQP in (5),
we focus on d = 2 and use polar coordinates. To analyze the
corresponding feasible space, we relax the uncertainty space
B2(b̂ex, τ) from a ball to an annular sector. Formally, let b̂ex ≜
r̂e(cos θ̂e, sin θ̂e) be the estimate of bex ≜ re(cos θe, sin θe)
such that |re − r̂e| ≤ ∆ and |θe − θ̂e| ≤ ϕ with probability
1− δ where ∆ ≜ τ ≥ 0 and ϕ ≜ sin−1(τ/∥b̂ex∥2) ∈ [0, π/2].
In other words, given r̂e, θ̂e,∆, and ϕ, with probability 1− δ,

bex ∈ A(∆, ϕ) ≜{b = r(cos θ, sin θ) :

|r − r̂e| ≤ ∆ and |θ − θ̂e| ≤ ϕ},

i.e., A(∆, ϕ)(⊃ B2(b̂ex, τ)) denotes the smallest annular sector
around b̂ex capturing our uncertainty in knowing bex (see
Figure 2 where A(∆, ϕ) is the shown in orange). Now, to
achieve fairness as in (4) (with probability 1− δ), we constrain
the robust QCQP in (5) as follows:

max
a∈B2(0,1)

⟨a,byx⟩2 s.t.
〈
a,b

〉2≤ ε, ∀b∈A(∆, ϕ). (6)

In the longer version [4], we characterize the optimal a in (6)
as a function of b̂ex, byx, ∆, ϕ, and ε using the geometry for
d = 2. As we show below, the constraint in (6) is equivalent
to ensuring ⟨a,b⟩2 ≤ ε for all b ∈ A(∆, ϕ) where A(∆, ϕ)
is the arc on the boundary of the angular sector A(∆, ϕ) with
maximum radius (shown in solid orange in Figure 2). Intuitively,
the feasible space corresponding to (r̂e +∆)(cos θ, sin θ) on
the arc is equivalent to the intersection of the feasible spaces
corresponding to {r(cos θ, sin θ)}r∈[r̂e−∆,r̂e+∆] in the sector.

Theorem 2 (Relaxed robust QCQP with infinite constraints).
Let A(∆, ϕ) ≜ {b : b = (r̂e+∆)(cos θ, sin θ) and |θ− θ̂e| ≤

1For ease of the exposition, we assume τ ≤ ∥bex∥2.
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(a) Feasible space when
√
ε > (r̂e +∆) sinϕ. (b) Feasible space when

√
ε < (r̂e +∆) sinϕ.

Fig. 2: Visualizing feasible space of the relaxed robust QCQP in Theorem 2 for ε = 0.9, r̂e = 1.6, and θ̂e = 0. We set ∆ = 0.2
and ϕ = π/12 for panel (a), and ∆ = 0.4 and ϕ = π/6 for panel (b). Each point is shown in polar coordinates, i.e., a point
(r, θ) denotes (r cos θ, r sin θ). The annular sector A(∆, ϕ) is the region enclosed by dashed lines, dashed arc, and solid arc in
orange. The arc A(∆, ϕ) is the solid arc in orange. The shaded region is the feasible space. The points b

(1)
ex , b(2)

ex , and b
(3)
ex

from Theorem 3 are in magenta, blue and green, respectively.

ϕ} be the arc on the boundary of A(∆, ϕ) with maximum
radius. Then, (6) is equivalent to

max
a∈B2(0,1)

⟨a,byx⟩2 s.t.
〈
a,b

〉2≤ ε, ∀b∈A(∆, ϕ). (7)

There is a phase transition in the nature of the feasible space
of the QCQP in (7). Figure 2(a) and (b) illustrate the space
for

√
ε≥(r̂e +∆) sinϕ and

√
ε≤(r̂e +∆) sinϕ, respectively.

C. Computationally feasible robust QCQP

While Theorem 2 simplifies the optimization in (6), the
resulting optimization still has infinite constraints. In high
dimensions, the projection onto the feasible space becomes
costly. Below, we provide an approximation to the feasible
space in (7) such that it has finitely many constraints. We note
that alternative approximations are possible.

Theorem 3 (Computationally feasible robust QCQP with
3 constraints). Let b

(1)
ex = (r̂e+∆)

cosϕ (cos θ̂e, sin θ̂e), b
(2)
ex =

(r̂e + ∆)(cos (θ̂e + ϕ), sin (θ̂e + ϕ)), and b
(3)
ex = (r̂e +

∆)(cos (θ̂e − ϕ), sin (θ̂e − ϕ)). Then, the feasible space of the
optimization below is a subset of the feasible space of the
optimization in (7):

max
a∈B2(0,1)

〈
a,byx

〉2
s.t

〈
a,b(i)

ex

〉2≤ ε for all i ∈ [3]. (8)

We visualize b
(1)
ex , b(2)

ex , and b
(3)
ex in Figure 2 (magenta, blue,

and green, respectively), and note that b(2)
ex and b

(3)
ex are the

extreme points of the arc A(∆, ϕ). Then, intuitively, Theorem 3
uses b

(1)
ex to approximate the effect of points in-between b

(2)
ex

and b
(3)
ex on A(∆, ϕ). In the longer version [4], we provide a

characterization of the optimal a in (8) as a function of b̂ex,
byx, ∆, ϕ, and ε as well as compare it with the optimal a in
(7) using the geometry for d = 2. We note that solving the
QCQP in (8) for d = 2 is straightforward using a standard
convex optimization solver, e.g., the CVXPY library [15].

D. Sensitive attributes missing completely at random.

In the longer version [4], we express the uncertainty
parameters ∆ and ϕ as a function of n, and consider
understanding how the optimal objective in (8) changes
when the uncertainty set A(∆, ϕ) changes. For concreteness,
we consider uncertainty due to sensitive attributes missing
completely at random. We analyze the power of each new
labeled sensitive attribute, and characterize scenarios where
the optimal performance of the robust QCQP (8) matches the
optimal performance in (4) without having to collect any extra
labeled sensitive attributes.

Corollary 1 (Free fairness). There exist problem instances
of the robust QCQP in (8) where the uncertainty incurs no
performance loss while achieving a strict fairness guarantee
without requiring additional labeled sensitive attributes.

IV. BOOTSTRAP-S: AN ILLUSTRATIVE APPLICATION

Next, we leverage our analysis to propose a generic algorithm
that handles high-dimensional features and non-Gaussian data
while accounting for uncertainty. At its core, the robust QCQP
(Theorem 3) constructs an uncertainty set around the estimated
canonical correlation matrix b̂ex ≜ b

(0)
ex by imposing additional

constraints to effectively addresses the unknown true bex. An
alternative perspective is to view the robust QCQP in (8) as

max
a∈B2(0,1)

〈
a,byx

〉2
s.t

〈
a,b(i)

ex

〉2 ≤ ε for all i ∈ {0} ∪ [3].

Here, the constraint with b
(0)
ex is redundant due to the

constraint with b
(1)
ex , and {b(i)

ex}i∈[3] can be viewed as multiple
estimates of b̂ex. For non-Gaussian data, we use a similar idea
non-parametrically following the bootstrap procedure [16]. We
refer to this method as Bootstrap-S.

Specifically, given uncertain sensitive attribute data D(u), a
fairness measure Φ, and a parameter S: we draw S subsets
D(u)

1 , . . . ,D(u)
S of some size k ∈ [n] from D(u) uniformly
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Fig. 3: The performance of robust QCQP in (8), Bootstrap-S with S ∈ {3, 9, 27}, and Baseline for d = 2 and ε = 0.025.
In the left column, we plot the fraction of violations of the true fairness constraint ⟨a,bex⟩2 ≤ ε vs. n; in the middle column,
we plot average MSE vs. n; in the right column, we plot the histogram of the value of ⟨a,bex⟩2 over 1,000 trials for n = 250.

at random with replacement. Then, we estimate the fairness
measure using each of these subsets as well as D(u), and
impose the collection of S constraints {ΦD(u)

i
(y , f, e) ≤ ϵ}i∈[S]

together with ΦD(u)(y , f, e) ≤ ϵ. In summary, we aim to solve:

min
f

ED(p)

[
ℓ(y , f)

]
s.t ΦD(u)(y , f, e) ≤ ϵ (9)

and ΦD(u)
i

(y , f, e) ≤ ϵ for all i ∈ [S].

The high level idea is similar to bootstrap confidence intervals
[17] allowing construction of better uncertainty set as number
of subsamples S increase. Notice that (9) is a constrained
optimization problem, which is non-trivial to solve in practice,
especially for neural network training. Typically, this is
addressed by adding the constraints as regularizers with
hyperparameter to control the trade-off during optimization,
i.e., minPrediction Loss + λ×Fairness Loss. However, the
performance can be sub-optimal as it depends on choice of λ.
Instead, we consider the Lagrangian dual of (9) and optimize
the resulting objective over the dual variables as in [18],

min
f

max
λ,λ1,··· ,λS≥0

ED(p)

[
ℓ(y , f)

]
+ λ

(
ΦD(u)(y , f, e)− ϵ

)
+

∑
i∈[S]

λi

(
ΦD(u)

i
(y , f, e)− ϵ

)
. (10)

V. EMPIRICAL EVALUATION

Synthetic data. First, we show the efficacy of the robust QCQP
in (8) in achieving strict fairness on synthetic Gaussian data.
We generate data using a zero-mean Gaussian distribution with
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Fig. 4: Performance of Baseline and Bootstrap-S on
the Crime data (the error bars are too small to see).

d = 2 and covariance Σfair
2 detailed in the longer version [4].

We present our results when uncertainty is due to sensitive
attributes missing completely at random, and provide many
additional experiments in the longer version [4]

We estimate b̂ex using n samples of (x, e) for various
choices of n. Then, we compare the robust QCQP and
Bootstrap-S applied to the QCQP in (4) (for various S)
against Baseline, which solves the QCQP in (4) using b̂ex.

The results, averaged over 1000 random trials, are shown in
Figure 3 (the error bars are too small to see). Robust QCQP
always ensures no fairness violations, and its performance
(in terms of average MSE) monotonically improves as n
increases. Importantly, it does not incur any significant loss in
the performance, demonstrating the free-fairness phenomenon
in Corollary 1, say, n ≈ 350 onwards. Bootstrap-S
well approximates the performance of robust QCQP and
outperforms Baseline in terms of fairness violations. As
alluded to earlier, Bootstrap-S achieves a better fairness
criterion as we increase S by forming a more accurate
uncertainty set, albeit with an increased computation.

Real data. Next, we test Bootstrap-S on the Crime data
[3], a regression task to predict the number of crimes per 100K
population in the U.S. The sensitive attribute is the percentage
of people belonging to a particular race in the community. We
detail the pre-processing steps in the longer version [4].

We train a two-layer neural network and use χ2-divergence
to impose the independence criterion (Section II). We induce
uncertainty in every sensitive attribute by adding independent
N (0, 0.25) noise. Given a fairness target ϵ, we train a model
over 50 independent trials of this noise and report average
values. We sweep over 500 ϵ from 0.001 to 0.5, and plot the
trade-off frontier using a moving average over 5 entries. We
provide more details & experiments in the long version [4].

We report predictive power via MSE (lower is better) and
fairness loss via χ2-divergence (lower the better) on a held-out
test set in Figure 4. We compare with Baseline which solves
(10) with λ1, · · · , λS fixed to 0. For reference, we also compare
with Oracle that has access to all the true sensitive attributes.
Bootstrap-S (with S = 5) achieves fairness levels that are
comparable to Oracle while maintaining a relatively high
level of predictive power, similar to Corollary 1.
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