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Abstract—This paper explores the problem of selecting opti-
mal hyperparameters in the Gibbs algorithm to minimize the
population risk, specifically focusing on the inverse temperature.
The inverse temperature is a hyperparameter that controls the
tradeoff between data fitting and generalization. We present a
characterization of the derivative of the population risk with
respect to the inverse temperature, expressed in terms of the
covariance between empirical risk and test loss. This character-
ization enables us to identify the optimal inverse temperature
that minimizes population risk. Additionally, we provide two
illustrative examples—a mean estimate and linear regression—to
validate our analytical findings. Notably, our analysis reveals
that the optimal inverse temperature exhibits different behaviors
in two different regimes based on data quality and prior
distribution. These insights contribute to our understanding of
linear regression and more general machine learning models.

I. INTRODUCTION

Understanding how a learning algorithm generalizes to
unseen data is a fundamental problem in statistical learning
theory. Various approaches have been developed including VC
dimension-based approach [1], algorithmic stability-based ap-
proaches [2], PAC-Bayesian bounding approach [3]. However,
these classical techniques are shown to be loose in the context
of deep learning [4] because they cannot fully capture all the
aspects of a learning problem, including model class, learning
algorithm, loss function, and data-generating distribution.

Recently, [5], [6] proposed to use the mutual information
between the training data and the learned model weights to
bound generalization error, which captures all components of
learning problems. Since then, multiple approaches [7]–[18]
have been proposed to refine information-theoretic generaliza-
tion error bounds. However, recent papers [19], [20] revealed
inherent limitations in existing information-theoretic bounds,
preventing them from achieving optimal rates for some well-
studied problems.

In addition, simply bounding the generalization error does
not complete the story. As the generalization error is the
difference between the population risk and empirical risk,
achieving zero generalization error does not guarantee a good
population performance if the empirical risk (training loss) is
large. Therefore, we need a method to capture the tradeoff
between generalization error and empirical risk accurately.

Due to the inherent sophistication of learning problems,
accurately characterizing such a tradeoff of any learning
algorithm using the existing information-theoretic approach is
challenging. In this paper, we shift the focus from arbitrary
learning algorithms to a specific one, the Gibbs algorithm. The

Gibbs algorithm (formally defined in (6)) can be interpreted as
a randomized variant of the standard empirical risk minimiza-
tion algorithm with regularization. Consequently, it possesses
the flexibility to approximate the behavior of many commonly
used algorithms in practice. As shown in [21], [22], one benefit
of the Gibbs algorithm is that the aforementioned fundamental
quantities, i.e., expected generalization error and the empirical
risk, can be characterized exactly.

Given such exact characterizations, we explore the problem
of how to choose the optimal hyper-parameters in the Gibbs
algorithm that minimizes the population risk to guide the
practical algorithm design. This paper focuses on the inverse
temperature, which controls the tradeoff between fitting the
training data and generalization. Note that there have been
other works aiming to highlight the Gibbs algorithm (referred
to as the power posterior in their context) in terms of its
robustness in handling model misspecification [23], [24],
which further motivates the problem considered here. Our
main contributions to this work are as follows:
• We provide an exact characterization of the derivative for

the population risk with respect to inverse temperature in
terms of the covariance between the empirical risk and test
loss, which captures the optimal inverse temperature that
minimizes the population risk.

• We further provide two simple examples to validate the
analysis, i.e., mean estimate and linear regression. In the
mean estimate example, our analysis shows that the optimal
inverse temperature has different forms in two regimes de-
pending on the quality of the data and the prior distribution.
Such a result provides valuable insights that contribute to
our understanding of linear regression and more general
machine learning models.

II. BACKGROUND AND RELATED WORKS

In this section, we first introduce some background about
supervised learning and the Gibbs algorithm.

Throughout the paper, upper-case letters denote random
variables (e.g., Z), lower-case letters denote the realizations
of random variables (e.g., z), and calligraphic letters denote
sets (e.g., Z). All the logarithms are natural ones, and all
the information measure units are nats. N (µ,Σ) denotes the
Gaussian distribution with mean µ and covariance matrix Σ.

A. Generalization Error in Supervised Learning

Let S = {Zi}ni=1 ∈ S be the training set, where each
Zi = {Xi, Yi} is defined on the same alphabet Z . Note that
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Zi is not required to be i.i.d generated from the same data-
generating distribution PZ , and we denote the joint distribution
of all the training samples as PS . We denote the space of
probability distributions over W and S by P(W) and P(S),
respectively. We also denote the hypotheses by w ∈ W , where
W is a hypothesis class. The performance of the hypothesis is
measured by a non-negative loss function ℓ : W ×Z → R+

0 ,
and we define the empirical and population risks associated
with a given hypothesis w via

LE(w, s) ≜
1

n

n∑
i=1

ℓ(w, zi), (1)

LP (w,PS) ≜ EPS
[LE(w, S)], (2)

respectively. A learning algorithm can be modeled as a ran-
domized mapping from the training set S onto a hypothesis
W ∈ W according to the conditional distribution PW |S . Thus,
the expected generalization error quantifying the degree of
over-fitting can be written as

gen(PW |S , PS) ≜ EPW,S
[LP (W,PS)− LE(W,S)], (3)

where the expectation is taken over the joint distribution
PW,S = PW |S ⊗ PS .

As PS is unknown in practice, we need to estimate the
population risk using the test loss, which is the empirical risk
evaluated on an independent test dataset S′ = {Z ′

i}ni=1 ∼ PS ,

LE(w, s
′) ≜

1

n

n∑
i=1

ℓ(w, z′i), (4)

where we assume S′ also contains n samples for simplicity.
Thus, we can also define the following expected generalization
error on fixed training and testing data as

gen(PW |S , s, s
′) ≜ EPW |S=s

[LE(W, s′)− LE(W, s)], (5)

where the randomness only comes from the learning algorithm.
If we further take expectation with respect to S and S′, it
reduces back to the expected generalization error in (3).

B. Motivation of Gibbs Algorithm

In this paper, we focus on the Gibbs algorithm (or Gibbs
posterior [25]), first proposed by [26] in statistical mechanics
and further investigated by [27] in information theory.

The Gibbs algorithm arises when conditional KL-divergence
is used as a regularizer to penalize over-fitting in the empirical
risk minimization (ERM) algorithm [22]. It was first shown
in [5], [6] that under the sub-Gaussian assumption, the ex-
pected generalization error of any learning algorithm PW |S
could be bounded using the mutual information between the
input training data S and the learned model weights W . This
result motivates regularizing the mutual information in the
standard ERM to improve the generalization performance.

As computing I(S;W ) requires the knowledge of PW ,
[6], [28] propose the following information risk minimization

(IRM) problem, which replaces I(S;W ) with an upper bound
D(PW |S∥π|PS), i.e.,

P γ
W |S ≜ argmin

PW |S

(
EPW,S

[LE(W,S)] +
1

γ
D(PW |S∥π|PS)

)
.

Here, π ∈ P(W) is an arbitrary prior distribution, and the
inverse temperature γ ≥ 0 controls the regularization term
and balances between data fitting and generalization. When
γ → ∞, IRM reduces back to the standard ERM algorithm;
when γ → 0, the learning algorithm ignores the training data,
and PW |S(w|s) = π(w).

It is shown in [6], [28], the solution of this information
risk minimization is the following (γ, π(w), LE(w, s))-Gibbs
algorithm, which is defined as:

P γ
W |S(w|s) =

π(w)e−γLE(w,s)

V (γ, s)
, (6)

where
V (γ, s) ≜

∫
π(w)e−γLE(w,s)dw (7)

is the partition function.
In practice, one way to implement the Gibbs algorithm is

to use the Stochastic Gradient Langevin Dynamics (SGLD)
algorithm [29], which can be viewed as the discrete version
of the continuous-time Langevin diffusion, or the noisy variant
of Stochastic Gradient Descent (SGD),

Wk+1 = Wk − η∇wLE(Wk, S) +

√
2η

γ
ζk, (8)

for k = 0, 1, · · · , where ζk is a standard Gaussian vector,
η > 0 is the step size and γ controls the variance of the
noise. In [30], it is proved that under certain conditions,
the conditional distribution PWk|S induced by the SGLD
algorithm is close to the Gibbs distribution in the Wasserstein
distance for sufficiently large k.

Another approach to sample from the Gibbs posterior is
the Metropolis-adjusted Langevin algorithm (MALA) [31].
MALA and SGLD are first-order sampling methods since they
have similar gradient update formulas as in (8), guarantee-
ing that both algorithms converge to the Gibbs distribution.
MALA differs from the SGLD by introducing an additional
Metropolis-adjusted step, which provides a faster convergence
rate, as shown in [31]–[33].

C. Existing Results

In this subsection, we review some existing results on
the information-theoretic characterization of the generalization
error and empirical risk for the Gibbs algorithm.

1) Generalization error of Gibbs algorithm: It has been
shown in [21], [34] that the expected generalization error
for the Gibbs algorithm can be characterized using the sym-
metrized Kullback-Leibler information, i.e.,

gen(P γ
W |S , PS) =

ISKL(W ;S)

γ
, with (9)

ISKL(W ;S) ≜ D(PW,S∥PW ⊗ PS) +D(PW ⊗ PS∥PW,S).
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Similar to mutual information I(W ;S) and KL divergence,
ISKL(W ;S) is induced from the symmetrized KL diver-
gence (or Jeffrey’s divergence [27]), which is also an f -
divergence [35]. Such a result highlights the role the sym-
metrized KL information plays in learning theory, and it holds
for non-i.i.d training samples S with finite n.

However, generalization error is just a part of the story, as
setting γ → 0 will lead to zero generalization error, but the
algorithm ignores the training data. Thus, to understand the
tradeoff between generalization and data fitting, we need to
characterize the empirical risk of the Gibbs algorithm.

2) Empirical risk of Gibbs algorithm: We notice that the
partition function V (γ, s) defined in (7) can be viewed as the
moment-generating function of the empirical risk −LE(W, s)
under π(W ). Therefore, the first and second-order moments of
LE(W, s) can be obtained using the derivative of the cumulant
generating function, as shown in the following lemma.

Lemma 1 ( [22, Lemma 17]): The log-partition function
log V (γ, s) is convex and differentiable infinitely many times
with respect to γ in the interior of {γ ≥ 0 : log V (γ, s) < ∞}.
In particular, the first and second derivatives satisfy

∂ log V (γ, s)

∂γ
= −Eγ [LE(W, s)], (10)

∂2 log V (γ, s)

∂γ2
= Varγ [LE(W, s)], (11)

where Eγ [ · ] ≜ EPγ
W |S=s

[ · ], and

Varγ [LE(W, s)] ≜ Eγ [LE(W, s)2]− Eγ [LE(W, s)]2 (12)

denote the expectation and variance under the Gibbs algorithm
P γ
W |S=s, respectively.
From Lemma 1, we can conclude that the expected empir-

ical risk of the Gibbs algorithm is a non-increasing function
of the inverse temperature γ. To see this, note that

∂

∂γ
Eγ [LE(W, s)] = −Varγ [LE(W, s)] ≤ 0.

To understand the tradeoff between empirical risk and
generalization error of the Gibbs algorithm, in the following,
we will mainly focus on the population risk and generalization
error of the Gibbs algorithm. Moreover, we adopt the following
notations for the expected test loss

LP (γ, s, s
′) ≜ Eγ [LE(W, s′)], (13)

and expected generalization error

gen(γ, s, s′) ≜ Eγ [LE(W, s′)− LE(W, s)]. (14)

on fixed training data s and testing data s′ for the Gibbs algo-
rithm, where the expectation is over the distribution P γ

W |S=s.

III. MAIN RESULTS

In this section, we aim to understand the monotonicity of
the population risk and the generalization error for the Gibbs
algorithm as we increase the inverse temperature γ. Such
an analysis could guide us in selecting the optimal inverse
temperature γ that minimizes the population risk when we
use the Gibbs algorithm in practice.

A. Expected Test Loss

The following theorem captures the first-order derivative of
the expected test loss LP (γ, s, s

′).
Theorem 1: For γ ∈ {γ ≥ 0 : log V (γ, s) < ∞}, the first

order-derivative of the expected test loss for fixed training and
testing data with respect to γ is given by

∂

∂γ
LP (γ, s, s

′) = −Covγ [LE(W, s′), LE(W, s)], (15)

where

Covγ [LE(W, s′), LE(W, s)] (16)

≜ Eγ [LE(W, s)LE(W, s′)]− Eγ [LE(W, s)]Eγ [LE(W, s′)].

Proof: As Gibbs posterior is differentiable with respect
to γ within the set {γ ≥ 0 : log V (γ, s) < ∞}, we can swap
the order of partial derivative and integral, then

∂

∂γ
LP (γ, s, s

′) =
∂

∂γ

∫
LE(w, s

′)
π(w)e−γLE(w,s)

V (γ, s)
dw

=

∫
LE(w, s

′)π(w)
∂

∂γ

e−γLE(w,s)

V (γ, s)
dw

(a)
=

∫
LE(w, s

′)π(w)
e−γLE(w,s)

V (γ, s)
(17)

·
(
Eγ [LE(W, s)]− LE(w, s)

)
dw

= Eγ

[
LE(W, s′)

(
Eγ [LE(W, s)]− LE(W, s)

)]
= −Covγ [LE(W, s′), LE(W, s)].

Here, equality (a) follows from the fact that

∂

∂γ

e−γLE(w,s)

V (γ, s)

=
−e−γLE(w,s)LE(w, s)V (γ, s)− V ′(γ, s)e−γLE(w,s)

V 2(γ, s)

=
e−γLE(w,s)

V (γ, s)

(
− V ′(γ, s)

V (γ, s)
− LE(w, s)

)
(18)

=
e−γLE(w,s)

V (γ, s)

(
− ∂

∂γ
log V (γ, s)− LE(w, s)

)
.

Then, the result follows by Lemma 1, which shows that the
first-order derivative of − log V (γ, s) is Eγ [LE(W, s)].

Unlike the expected empirical risk, the covariance term
Covγ [LE(W, s′), LE(W, s)] can be either positive or negative,
and it is hard to conclude the monotonicity of the expected test
loss LP (γ, s, s

′). Thus, to find the optimal inverse temperature
γ∗ that minimizes the population risk, we also need to check
the second-order derivative of LP (γ

∗, s, s′) under the first-
order condition Covγ∗ [LE(W, s′), LE(W, s)] = 0.

We have the following theorem that characterizes the
second-order derivative of the expected test loss, given that
the first-order condition is satisfied. The proof is omitted due
to the space limit.

Theorem 2: For γ ∈ {γ ≥ 0 : log V (γ, s) < ∞}, under the
condition that Covγ∗ [LE(W, s′), LE(W, s)] = 0, the second
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order-derivative of the expected test loss for fixed training and
testing data with respect to γ is given by

∂2

∂γ2
LP (γ, s, s

′)
∣∣∣
γ=γ∗

= Covγ∗ [LE(W, s′), LE(W, s)2].

From Theorem 1 and 2, a condition of the optimal in-
verse temperature γ∗ that achieves the local minimum of
LP (γ, s, s

′) is given by,

Covγ∗ [LE(W, s′), LE(W, s)] = 0, (19)

Covγ∗ [LE(W, s′), LE(W, s)2] > 0. (20)

In addition, it is easy to see that by taking the expectation
over both PS and PS′ , the optimal inverse temperature γ∗ that
achieves the local minimum of LP (P

γ
W |S , PS) should satisfy

the following two conditions,

EPSPS′

[
Covγ∗ [LE(W,S′), LE(W,S)]

]
= 0, (21)

EPSPS′

[
Covγ∗ [LE(W, s′), LE(W, s)2]

]
> 0. (22)

We note that the optimal γ∗ given by the aforementioned
conditions may not exist. As shown in our example in Sec-
tion IV-A, it implies that the optimal γ∗ → ∞.

B. Expected Generalization Error
As generalization error is the difference between population

risk and empirical risk, we obtain the following corollary that
characterizes the derivative of the expected generalization error
with respect to γ by combining our Theorem 1 with Lemma 1.

Corollary 1: For γ ∈ {γ ≥ 0 : log V (γ, s) < ∞}, the first
order-derivative of the expected generalization error for fixed
training and testing data with respect to γ is given by

∂

∂γ
gen(γ, s, s′)

= Varγ(LE(W, s))− Covγ [LE(W, s′), LE(W, s)].

In addition, we have
∂

∂γ
gen(P γ

W |S , PS)

= EPSPS′

[
Varγ(LE(W,S))− Covγ [LE(W,S′), LE(W,S)]

]
.

Unlike the empirical risk, which is always non-increasing
with respect to γ, we cannot show that the generalization error
is non-decreasing, i.e., ∂

∂γ gen(PW |S , PS) ≥ 0. This is because
Cauchy-Schwarz Inequality only guarantees that∣∣Covγ [LE(W, s′), LE(W, s)]

∣∣
≤

√
Varγ(LE(W, s))Varγ(LE(W, s′)). (23)

However, we cannot compare Varγ(LE(W, s)) and
Varγ(LE(W, s′)) in general cases.

It is easy to see that the generalization error reaches zero as
γ → 0. Moreover, [21] provides a bound of order O

(
γ
n

)
by

simply combining the ISKL characterization with the mutual
information-based generalization error bound, which may hint
that generalization error is always increasing with γ. However,
in Section IV-B, we will illustrate an example to elucidate
how the generalization error initially rises from zero and
subsequently decreases as γ increases.

IV. ILLUSTRATIVE EXAMPLES

In this section, we provide two illustrative examples to
deepen our understanding of the theoretical results for optimal
inverse temperature: the mean estimation and linear regression.

A. Mean Estimation Example

Consider the problem of learning the mean µ ∈ Rd of a
random vector Z using n i.i.d training samples S = {zi}ni=1.
We do not assume Gaussian distribution for the data, but
the covariance matrix of Z satisfies ΣZ = σ2

ZId with
unknown σ2

Z . We adopt the mean-squared loss ℓ(w, z) =
∥z − w∥22, and assume a Gaussian prior for the mean
π(w) = N (µ0, σ

2
0Id). Then the (γ,N (µ0, σ

2
0Id), LE(w, s))-

Gibbs algorithm is given by the following Gaussian posterior
distribution as shown in [21],

P γ
W |S(w|zn) ∼ N

(
αµ0 + (1− α)z̄, ασ2

0Id

)
, (24a)

with

α ≜
1

2σ2
0γ + 1

, z̄ ≜
1

n

n∑
i=1

zi. (24b)

One way to find the optimal γ∗ is to evaluate the population
risk by decomposing it into generalization error and empirical
risk. The generalization error can be obtained by computing
ISKL(W ;S) for Gaussian channel directly, which has the
decay rate of O (1/n) as shown in [21]. By lemma 1, we can
also compute the expected empirical risk using log V (γ, s),
which follows the non-central chi-squared distribution under
PS . Thus, we obtain the following exact characterization of
the population risk, i.e.,

LP (P
γ
W |S , PS) (25)

=
4dσ2

0σ
2
Zγ

n(1+2σ2
0γ)︸ ︷︷ ︸

generalization error

+
∥µ0−µ∥22+dσ2

z/n

(1+2σ2
0γ)

2
+

dσ2
0

1+2σ2
0γ

+
n−1

n
dσ2

Z .︸ ︷︷ ︸
empirical risk

Then, optimizing over γ will identify the optimal inverse
temperature.

Another approach is to directly evaluate the derivative of
LP (γ, s, s

′) by computing the covariance term in Theorem 1.
In particular, for an independent test dataset S′ = {z′

i}ni=1,
we can show that

∂

∂γ
LP (γ, s, s

′)

= −Covγ [LE(W, s′), LE(W, s)]

=
−2σ2

0

(2γσ2
0 + 1)3

(
2(∥µ0∥2 − µ⊤

0 (z̄ + z̄′) + z̄′⊤z̄)

+ 4γσ2
0µ

⊤
0 (z̄ − z̄′)− 4γσ2

0∥z̄∥2 + 4γσ2
0 z̄

⊤z̄′

+ 2dγσ4
0 + dσ2

0

)
, (26)
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which only depends on S and S′ through the average across
the samples. Taking expectations over the training and test
data set, we obtain

∂

∂γ
LP (P

γ
W |S , PS) (27)

=
2σ2

0

(2γσ2
0 + 1)3

(
2dσ2

0(2
σ2
Z

n
− σ2

0)γ − 2∥µ− µ0∥2 − dσ2
0

)
,

which is equivalent to taking derivative with γ in (25).
Thus, the optimal inverse temperature of γ that minimizes

the population risk depends on other parameters of the problem
in a non-trivial manner, i.e.,

γ∗ =

{
+∞, if σ2

Z

n ∈ [0,
σ2
0

2 ), (high-SNR)
∥µ−µ0∥2+dσ2

0/2

d(2σ2
Z/n−σ2

0)σ
2
0
, if σ2

Z

n ∈ [
σ2
0

2 ,∞). (low-SNR)
(28)

Here, the term σ2
Z

n only depends on the training data S, which
can be interpreted as the normalized noise of the samples, and
σ2
0 and ∥µ − µ0∥2 captures the confidence and the bias of

the prior knowledge. Therefore, we can connect the two cases
here with the concept of signal-to-noise ratio (SNR).

The optimal Gibbs algorithm has different forms in the
following two regimes, i.e., 1) high-SNR regime, where the
quality of training samples surpasses prior knowledge, the
optimal algorithm involves discarding the prior distribution
and employing the standard ERM algorithm; 2) low-SNR
regime, where we should incorporate knowledge from both
the training samples and prior distribution, and the optimal γ
depends on σ2

Z

n , σ2
0 and ∥µ−µ0∥2. In the extreme case where

µ0 = µ and σ2
0 = 0, the optimal γ∗ = 0, indicating that

we should discard the samples and solely rely on the prior
knowledge.

Although the above result is obtained within the mean
estimation example, the optimal inverse temperature in two
different regimes provides insights to help us understand more
general machine learning models.

B. Simulation for Linear Regression

In this example, we consider a simple linear regression
problem, where the training data S = {(xi, yi)}ni=1, with
X = Rd and Y = R. Specifically, the data is generated using
the true weights W ∗ ∈ Rd with additive noise, i.e.,

Yi = Xi ·W ∗ + εi, ε ∼ N (0, σ2
ε). (29)

We adopt the mean-squared loss ℓ(w, z) = (y − x · w)2,
and assume a zero-mean Gaussian prior for the weights
π(w) = N (0, σ2

0Id). Then the (γ,N (0, σ2
0Id), LE(w, s))-

Gibbs algorithm is given by the following Gaussian posterior
distribution

P γ
W |S(w|S) ∼ N

(
Σ−1X⊤Y ,

n

2γ
Σ−1

)
, (30)

with Σ ≜ X⊤X + n
2σ2

0γ
Id, and X ∈ Rn×d,Y ∈ Rn are the

matrix form of the training data.
To avoid the computation involving multivariate non-central

chi-squared distribution, we directly perform simulation to

(a). Low-SNR MSE. (c). High-SNR MSE.

(b). Low-SNR Covariance. (d). High-SNR Covariance.
Fig. 1. Simulation results for the linear regression example.

verify our theoretical results. Specifically, we use the following
parameters: ΣX = Id, d = 5, σ2

0 = 2. Motivated by (28), we
further consider the following two cases: 1) low SNR regime,
where the number of training samples n = 10, and σ2

ε = 3;
and 2) high SNR regime, with n = 100, and σ2

ε = 1.
We plot the average empirical risk, population risk, and

generalization error over 500 runs for different values of γ
on Figure 1 (top) using the Gaussian Gibbs posterior in (30).
We further estimate the covariance between the test loss and
training loss and the variance for the training loss, respectively,
and plot them in the bottom of Figure 1.

As shown in Figure 1 (a) and (b), in this low SNR regime,
the optimal γ∗ that minimizes the population risk is roughly
at 1, which is also reflected by the zero point of the estimated
covariance. In this case, the generalization error is increasing
as we increase the inverse temperature γ.

However, for the high SNR regime in Figure 1 (c) and (d),
the population risk is always decreasing, and the estimated
covariance converges to zero but never reaches zero in the
considered range of γ, implying that the optimal γ∗ → ∞.
More interestingly, the generalization error in this case is
not monotone. It first jumps to 0.4 from zero and slowly
decreases to 0.2, which further demonstrates the looseness of
the previous O

(
γ
n

)
bound in [21].

V. CONCLUSION

Our investigation into the exact characterization of the
Gibbs algorithm in this paper has paved the way for addressing
the problem of selecting optimal hyperparameters, specifically
focusing on the inverse temperature, to minimize population
risk. We hope the optimal inverse temperature in high-SNR
and low-SNR regimes provides insights to inform practical
algorithm design. While we have concentrated on the inverse
temperature in this paper, it is important to acknowledge that
other design choices in the Gibbs algorithm, such as the model
family, loss function, and the prior distribution π, remain areas
of future exploration and research.
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