
Information-theoretic Analysis of the Gibbs
Algorithm: An Individual Sample Approach

Youheng Zhu
School of Computer Science and Technology

Huazhong University of Science and Technology
Wuhan, China

email: youhengzhu@hust.edu.cn

Yuheng Bu
ECE department

University of Florida
Gainesville, USA

email: buyuheng@ufl.edu

Abstract—Recent progress has shown that the generalization
error of the Gibbs algorithm can be exactly characterized using
the symmetrized KL information between the learned hypothesis
and the entire training dataset. However, evaluating such a
characterization is cumbersome, as it involves a high-dimensional
information measure. In this paper, we address this issue by
considering individual sample information measures within the
Gibbs algorithm. Our main contribution lies in establishing
the asymptotic equivalence between the sum of symmetrized
KL information between the output hypothesis and individual
samples and that between the hypothesis and the entire dataset.
We prove this by providing explicit expressions for the gap be-
tween these measures in the non-asymptotic regime. Additionally,
we characterize the asymptotic behavior of various information
measures in the context of the Gibbs algorithm, leading to tighter
generalization error bounds. An illustrative example is provided
to verify our theoretical results, demonstrating our analysis holds
in broader settings.

I. INTRODUCTION

One of the most important research topics in statistical
learning theory is to capture the generalization behavior of
the learning algorithms to avoid overfitting. Recently, [1], [2]
proposed an information-theoretic approach to bound gener-
alization error, where a learning algorithm is modeled as a
randomized channel that takes the training dataset as input
and outputs the learned hypothesis. In this setting, different
information measures can be used to derive various non-trivial
generalization error bounds, which capture all components
in supervised learning, including the data-generating distri-
bution, hypothesis class, and the learning algorithm itself. In
comparison, traditional approaches such as VC-dimension [3],
algorithmic stability [4], algorithmic robustness [5], and PAC-
Bayesian bounds [6] cannot exploit all the aspects that affect
the generalization performance.

After the seminal work [2], several approaches [7]–[15]
have been proposed to refine information-theoretic general-
ization error bounds. Among them, a significant advancement
is presented in [16], where the individual sample mutual
information bound is introduced. By focusing on information
measures involving individual samples, this bound is not only
tighter but also simplifies the empirical estimation process,
for instance, by using neural estimators like MINE [17]. In
contrast, the mutual information-based bound in [2] depends

on the mutual information between the hypothesis and the
entire training dataset, making it nearly impossible to estimate
with a large sample size n.

This paper explores a similar individual sample approach
in the context of a specific learning algorithm, the Gibbs
algorithm (formally defined in (7)). Such an algorithm can
be interpreted as a randomized variant of the standard em-
pirical risk minimization algorithm with mutual information
as regularization, and it has other important connections to
SGLD [18] and PAC-Bayesian bound [19]. More importantly,
it has been shown in [20]–[22] that the generalization error
of the Gibbs algorithm can be characterized exactly using the
symmetrized KL information between the hypothesis and the
entire dataset. Just like the mutual information-based bound,
this exact characterization also suffers from the same drawback
in practical evaluation due to its high dimensionality.

To address such an issue, in this paper, we study the
individual sample information measures within the Gibbs
algorithm and their counterparts involving the entire dataset.
Our main contribution is an equivalency between the sum of
symmetrized KL information between the output hypothesis
and individual samples and that between the hypothesis and
the entire dataset in the asymptotic regime n → ∞. We also
present other interesting properties of information measures
in the individual sample context for both non-asymptotic and
asymptotic regimes. In particular:

• In Section III, we provide an explicit expression of the
gap between the sum of symmetrized KL information
w.r.t individual samples and that w.r.t the entire dataset
in the non-asymptotic regime.

• In Section IV, we precisely characterize the asymptotic
behavior of different information measures for the Gibbs
algorithm in terms of both convergence rate and constant
factor. We then present our main theorem and additional
results derived using similar techniques, which leads to a
tighter bound on the generalization error.

• In Section V, an illustrative mean estimation example is
provided to verify all theoretical results and demonstrate
that our findings can hold in a more general setting.

2024 IEEE Information Theory Workshop (ITW)

979-8-3503-4893-4/24/$31.00 ©2024 IEEE 537

20
24

 IE
EE

 In
fo

rm
at

io
n 

Th
eo

ry
 W

or
ks

ho
p 

(IT
W

) |
 9

79
-8

-3
50

3-
48

93
-4

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
 D

O
I: 

10
.1

10
9/

IT
W

61
38

5.
20

24
.1

08
06

93
3

Authorized licensed use limited to: University of Florida. Downloaded on January 27,2025 at 05:11:42 UTC from IEEE Xplore.  Restrictions apply. 



II. PRELIMINARIES

In this section, we first introduce some background about
information measures and the Gibbs algorithm.

A. Relevant Information Measures
Given two probability measures P and Q defined on the

same probability space (Ω,F), the symmetrized Kullback-
Leibler (KL) divergence is defined as

DSKL(P∥Q) ≜ D(P∥Q) +D(Q∥P ), (1)

which symmetrizes the standard KL divergence D(P∥Q).
When P ≪ Q ≪ P where ≪ denotes absolute continuity
between measures, symmetrized KL divergence can be written
as

DSKL(P∥Q) = EQ

[
dP

dQ
log

dP

dQ
− log

dP

dQ

]
. (2)

It is natural to see that symmetrized KL divergence also
belongs to the f -divergence family [23].

For two random variables X and Y , their mutual infor-
mation is the KL divergence between their joint distribution
and the product of the marginal distributions, i.e., I(X;Y ) ≜
D(PX,Y ∥PX⊗PY ). Similarly, we can define the symmetrized
KL information as

ISKL(X;Y ) ≜ DSKL(PX,Y ∥PX ⊗ PY )

= I(X;Y ) + L(X;Y ),
(3)

where L(X;Y ) ≜ D(PX ⊗ PY ∥PX,Y ) represents lautum
information [24].

B. Generalization Error in Supervised Learning
We denote W as the hypothesis class and Z as the instance

space. A training dataset S = {Zi}ni=1 ∈ S with Zi ∈ Z
consists n samples drawn i.i.d from the data-generating distri-
bution µ. A loss function ℓ : W×Z → R+

0 is used to measure
the performance of a hypothesis on a sample Z. Therefore,
we define the empirical and population risks associated with
a given hypothesis w by

Le(w, s) ≜
1

n

n∑
i=1

ℓ(w, zi), (4)

Lµ(w) ≜ EZ∼µ[ℓ(w,Z)], (5)

respectively. In statistical learning, a learning algorithm can be
modeled as a randomized mapping from the training set S onto
a hypothesis W ∈ W according to the conditional distribution
PW |S . We define the expected generalization error quantifying
the degree of over-fitting as

gen(PW |S , PS) ≜ EPW,S
[Lµ(W )− Le(W,S)] (6)

= EPW⊗PS
[Le(W,S)]− EPW,S

[Le(W,S)],

where the joint distribution PW,S = PW |S⊗PS = PW |S⊗µn.
Following the framework proposed in [21], we focus on a

specific learning algorithm PW |S , i.e., the Gibbs algorithm (or
Gibbs posterior [25]), which is defined as

P
[n]
W |S(w|s) ≜

π(w)e−γLe(w,s)

VLe
(s, γ)

. (7)

Here, γ is the inverse temperature, π(w) is an arbitrar-
ily chosen prior distribution over W , and VLe

(s, γ) ≜∫
W π(w)e−γLe(w,s)dw is the partition function that normalizes

the distribution.
As shown in [20], [21], an important property of the

Gibbs algorithm is that its generalization error can be exactly
characterized using the symmetrized KL information:

gen(PW |S , PS) = ISKL(W ;S)/γ. (8)

C. Other Notations

We will adopt the following notations to express the
asymptotic scaling of quantities with n: f(n) = O(g(n))
represents that there exists a constant c s.t. |f(n)| ≤ cg(n);
f(n) = Θ(g(n)) when there exist two constants c1 > 0,
c2 > 0 s.t. c1g(n) ≤ f(n) ≤ c2g(n); f(n) = o(g(n))
when limn→∞(f(n)/g(n)) = 0; and f(n) ∼ g(n) when
limn→∞(f(n)/g(n)) = 1.

To simplify notation, we denote a probability measure or its
corresponding probability density function by PW when there
is no ambiguity. We use PW |Zn to represent the conditional
probability density function, with the capital W,Z representing
that it is also a random variable.

Throughout the paper, we will consider the Gibbs algorithm
with a fixed inverse temperature γ and study its asymptotic
behavior as the number of training samples n → ∞. It is
convenient for us to define the Gibbs algorithm using the
population risk, i.e.,

P∞
W (w) ≜

π(w)e−γLµ(w)∫
W π(w)e−γLµ(w)dw

, (9)

and the expectation of any measurable function f(·) under P∞
W

is denoted as

E∞
W [f(W )] ≜

∫
W

P∞
W (w)f(w)dw. (10)

III. NON-ASYMPTOTIC RESULTS

Motivated by the idea of using individual sample infor-
mation measures proposed in [16], we first investigate the
connection between the joint symmetrized KL information and
its individual sample counterpart for the Gibbs algorithm.

The following theorem states that the difference between
these two information measures can be characterized using
the Jensen gap.

Theorem 1. For joint distribution PW,S induced by the Gibbs
algorithm, we have

n∑
i=1

ISKL(W ;Zi)− ISKL(W ;S)

=

n∑
i=1

(
EPW,Zi

[J
[n]
i (W,Zi)]−EPW⊗PZi

[J
[n]
i (W,Zi)]

)
, (11)
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where the Jensen gap J
[n]
i (w, zi) is defined as

J
[n]
i (w, zi) ≜ log

∫
Zn−1

P
[n]
W |S(w|zi, z

−i)dµn−1(z−i) (12)

−
∫
Zn−1

log
(
P

[n]
W |S(w|zi, z

−i)
)
dµn−1(z−i),

with z−i ≜ {z1, · · · , zi−1, zi+1, · · · , zn}.

All the proofs of the results presented in the paper can
be found in [26]. We note that this theorem holds whenever
the samples S are drawn independently but not necessarily
identically generated from the distribution µ.

Remark 1. As the log function is concave, the Jensen gap
J
[n]
i (w, zi) is always non-negative. However, the RHS of

(11) can be either negative or positive. An example show-
ing that ISKL(W ;S) can be either larger or smaller than∑n

i=1 ISKL(W ;Zi) can be found in [20, Example 1].

It is worth mentioning that the Jensen gap J
[n]
i (w, zi)

in Theorem 1 has its own operational meaning by making
the connection to the worst-case data-generating distribution
introduced in [27]. A detailed discussion can be found in [26].
Other than this, interpreting this Jensen gap directly through
finite sample analysis is challenging, prompting us to delve
into the asymptotic regime in the next section.

IV. ASYMPTOTIC RESULTS

In this section, we provide an asymptotic analysis of
different information measures with i.i.d samples, e.g., the
joint symmetrized KL information and its individual sample
counterpart for the Gibbs algorithm.

A. Asymptotics of Individual Sample Information Measures

We start by rigorously defining the limiting probability
space (W×Z∞,F∞, P∞

W ⊗PZ∞) in the following definition.

Definition 1. As the training data were i.i.d sampled from
data distribution µ, there exists a filtered probability space
(Z∞,FZ∞ , {F [n]

Zn}, PZ∞) where

F [n]
Zn = σ(Z1, Z2, . . . , Zn), FZ∞ = σ

(⋃
n

F [n]
Zn

)
. (13)

We define a probability space (W,B, P∞
W ) and the following

product probability space

(W ×Z∞,F∞, {F [n]
W,Zn}, P∞

W ⊗ PZ∞)

≜(W,B, P∞
W )× (Z∞,FZ∞ , {F [n]

Zn}, PZ∞). (14)

For every sub-σ-algebra F [n]
Zn , P [n]

W,Zn is the probability mea-
sure induced by the Gibbs algorithm and the distribution of
the dataset with size n, and P

[n]
W,Zi

is the marginalization of
P

[n]
W,Zn .

Now, we are ready to study the asymptotic behavior of the
Gibbs algorithm. We start by presenting the following two
lemmas that capture the limit of the joint distribution P

[n]
W,Zn .

Lemma 1. For non-negative loss ℓ(w, z) ≥ 0, we have

lim
n→∞

(
dP

[n]
W,Zn

dP∞
W ⊗ PZ∞

)
= 1 a.s. (15)

Lemma 2. For non-negative loss ℓ(w, z) ≥ 0 and any
individual sample Zi, we have

lim
n→∞

(
dP

[n]
W,Zi

dP∞
W ⊗ PZ∞

)
= 1 a.s. (16)

These two lemmas rigorously confirm the intuition that as
n → ∞, the asymptotic joint distribution P

[n]
W,Zn will converge

to a product measure P∞
W ⊗PZ∞ , i.e., the learned hypothesis

W depends solely on the data distribution µ and is independent
of the dataset S. It is worth mentioning that this result is
widely applicable, as it only requires the loss function to be
non-negative or lower-bounded.

Corollary 1. If we further assume that the loss function is

bounded, i.e., ℓ(w, z) ∈ [0, C], we have that
( dP

[n]
W,Zn

dP∞
W ⊗PZ∞

)
and

( dP
[n]
W,Zi

dP∞
W ⊗PZ∞

)
are both uniformly bounded. Furthermore,

limn→∞
( dP

[n]
W,Zi

dP∞
W ⊗PZ∞

)
= 1 almost surely.

In the following, we will focus on the bounded loss function
case. We already know that dP [n]

W ⊗PZi
/dP

[n]
W,Zi

converges to
1 as n → ∞, and the following lemma characterizes the exact
rate of such convergence.

Lemma 3. If the loss function ℓ(w, z) is bounded, we have

lim
n→∞

n ·
(
1−

dP
[n]
W ⊗ PZi

dP
[n]
W,Zi

)
(17)

=− γ[ℓ(W,Zi)− Lµ(W )] + E∞
W [γ(ℓ(W,Zi)− Lµ(W ))].

Additionally, n ·
(
1−

dP
[n]
W ⊗ PZi

dP
[n]
W,Zi

)
is uniformly bounded.

Built upon this Lemma, we provide the following theorem
that characterizes the convergence rate of ISKL(W ;Zi) with
a tight constant factor as n → ∞.

Theorem 2. If the loss function ℓ(w, z) is bounded, we have

ISKL(W ;Zi) ∼
γ2

n2
Eµ

[
E∞
W

[
(ℓ(W,Z)− Lµ(W ))2

]
− E∞

W

[
(ℓ(W,Z)− Lµ(W ))

]2]
. (18)

The constant on the right-hand side of (18) can be inter-
preted as the variance of ℓ(W,Z)− Lµ(W ), which is always
non-negative. It is also strictly positive unless ℓ(w, z) is a
constant for every fixed w.

The proof of Lemma 3 and Theorem 2 mainly use the strong
law of large numbers and the dominated convergence theorem,
and more details can be found in [26]. As shown in the
following corollaries, the same technique can also be applied
to other information measures, specifically, the χ2 information.
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Corollary 2. The χ2 information has the similar rate if the
loss function ℓ(w, z) is bounded, i.e.,

Iχ2(W ;Zi) = Θ

(
1

n2

)
, (19)

furthermore,

Iχ2(W ;Zi) ∼ ISKL(W ;Zi). (20)

Corollary 3. If the loss function ℓ(w, z) is bounded, we have

I(W ;Zi) = O

(
1

n2

)
. (21)

Remark 2. Corollary 3 is directly obtained using Theorem 2
and the fact that I(W ;Zi) ≤ ISKL(W ;Zi). However, if we
directly use the bounding technique used in Theorem 2 for
mutual information, it yields a weaker conclusion I(W ;Zi) =
o
(
1
n

)
. One possible reason is that mutual information cor-

responds to f-divergence with f(x) = x log x, which is not
consistently positive for all x > 0. On the other hand, f(x) =
x log x − log x for symmetrized KL information, which is
always non-negative. Therefore, swapping the expectation and
the limit in the proof of Theorem 2 will have a smaller impact
on the analysis, leading to a more refined characterization.
The same argument applies to χ2 divergence as well.

B. Asymptotics of the Gap

In this subsection, we focus on the gap between the sum of
ISKL(W ;Zi) and ISKL(W ;S) in the asymptotic regime. Our
goal is to prove that this gap converges to zero faster than
ISKL(W ;S), i.e., the generalization error itself. We begin by
presenting two lemmas that capture the asymptotic behaviors
of the Jensen gap J

[n]
i (w, zi) defined in Thorem 1.

Lemma 4. If the loss function ℓ(w, z) is bounded, there exists
a sequence of functions Ĵ [n](w) independent of zi such that

lim
n→∞

n · (Ĵ [n](w)− J
[n]
i (w, zi)) = 0. (22)

Furthermore, n ·(Ĵ [n](w)−J
[n]
i (w, zi)) is uniformly bounded.

This result shows that despite J
[n]
i (w, zi) is a function of

both w and zi, the influence of zi is relatively negligible when
n goes to infinity.

Lemma 5. If the loss function ℓ(w, z) is bounded, the Ĵ [n](w)
introduced in Lemma 4 satisfying n · Ĵ [n](w) is uniformly
bounded. Furthermore, limn→∞ n · Ĵ [n](w) exists.

Equipped with these technical lemmas, we present the main
theorem of the paper, which shows that the gap between
ISKL(W ;S) and the sum of ISKL(W ;Zi) converges to zero
faster than 1

n .

Theorem 3. If the loss function ℓ(w, z) is bounded, we have
n∑

i=1

ISKL(W ;Zi)− ISKL(W ;S) = o
( 1
n

)
. (23)

It is worth pointing out that the key for proving Theorem 3
is Lemma 4, which indicates that the effect of terms involving
variable zi is order-wise small compared to the remaining
terms. Utilizing this result, we apply the dominated conver-
gence theorem on n ·

(∑n
i=1 ISKL(W ;Zi) − ISKL(W ;S)

)
.

More proof details can be found in [26].
From Theorem 3, we can immediately obtain the following

corollary.

Corollary 4. If the loss function ℓ(w, z) is bounded, we have

ISKL(W ;S) = Θ

(
1

n

)
. (24)

More specifically,

ISKL(W ;S) ∼
n∑

i=1

ISKL(W ;Zi). (25)

The result in Corollary 4 aligns with the conclusion in [28],
which states that for a Gibbs algorithm, when the loss function
ℓ ∈ [0, 1],

|gen(P [n]
W |S , PS)| ≤

γ

2n
. (26)

Remark 3. As a sanity check, we look at a simple coin-tossing
example, where w ∈ {0, 1} and z ∈ {0, 1}, ℓ(w, z) = 1w=z

is a zero-one loss, and π(w) is uniform over {0, 1}. From
Corollary 4, the convergence behavior of ISKL(W ;S) and thus
gen(P

[n]
W |S , PS) can be calculated as

lim
n→∞

n · gen(P [n]
W |S , PS) =

γ

4
, (27)

which indicates that the γ/2n bound in (26) is not tight.

From Corollary 4, it is easy to see that I(W ;S) ≤
ISKL(W ;S) = Θ

(
1
n

)
, indicating I(W ;S) = O

(
1
n

)
. With

the same argument, the lautum information also satisfies that
L(W ;S) = O

(
1
n

)
. However, it is not clear which quantity

contributes more to the generalization error of the Gibbs
algorithm. The following theorem answers the question by
proving that the two information measures equal each other
asymptotically.

Theorem 4. If the loss function ℓ(w, z) is bounded, we have

lim
n→∞

n·I(W ;S) = lim
n→∞

n·L(W ;S) =
1

2
lim
n→∞

n·ISKL(W ;S).

In other words, I(W ;S) ∼ L(W ;S) = Θ
(
1
n

)
.

The proof technique of Theorem 4 differs from those used
in Lemma 3 and Theorem 2. Here, our idea is to sandwich the
target quantity between an upper bound and a lower bound that
differ only in the third or higher-order terms. We then prove
that the two bounds converge to the same value, characterized
by the second-order term. Instead of using the dominated
convergence theorem as in Lemma 3 and Theorem 2, we
directly analyze the integral of the second-order terms for any
n before taking the limit. In this process, the independence of
the samples plays a crucial role, ensuring that all interaction
terms are zero.
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Using Theorem 4, we can provide an alternative proof for
Corollary 3 by applying the Proposition 2 of [16], i.e.,

I(W ;S) ≥
n∑

i=1

I(W ;Zi). (28)

We provide the following result to showcase Theorem 4,
which tightens the existing generalization error bound for the
Gibbs algorithm.

Theorem 5. For Gibbs algorithm with bounded loss function
ℓ(w, z) ∈ [a, b], ∀δ > 0, there exist an N ∈ N+ such that
∀n > N ,

0 ≤ gen(P
[n]
W |S , PS) ≤

(b− a)2γ

(4− δ)n
. (29)

This theorem provides a tighter bound compared with (26).
Revisiting the coin-tossing example, it is interesting to see that
this bound is asymptotically tight in this circumstance.

C. Comparison with Asymptotics of Model Capacity
We would like to compare our result with the asymptotic

model capacity studied in [29], [30]. Different from our
setting, they considered data Y n ∈ Yn that are drawn i.i.d
from PY |X(y|x), where X ∈ X ⊂ R denotes the model
parameter from certain model family. For such a Bayesian
setting, the model parameter X is modeled using a prior
distribution PX(x). If the model PY |X is sufficiently smooth
in X , then

I(X;Y n) =
1

2
log

n

2πe
−D(PX∥P ∗

X)− log

∫
X

√
J(x′)dx′

+ o(1), (30)

where

J(x) = EPY |X=x

[(
∂

∂x
logPY |X(Y |x)

)2]
, (31)

and P ∗
X denotes the least informative prior, i.e., Jeffery’s

prior [31]. The mutual information is maximized when
PX = P ∗

X , i.e., P ∗
X is the capacity achieving distribu-

tion. We can see the growing rate of mutual information is
I(X;Y n) = O(log n), which is different from the asymptotic
result I(W ;S) = Θ( 1n ) in Theorem 4.

The difference between our setting and the model capacity
setting is two-fold: 1) we considered i.i.d samples from data
distribution µ, while the model capacity setting considers
samples conditionally independent generated from PY |X ; 2) In
our setting, the channel PW |Zn is the Gibbs algorithm defined
using a bounded loss function ℓ(w, z), so that conditional on
W , the samples are not independent to each other anymore.
However, the posterior PX|Y n in the model capacity setting is
induced by the prior PX and the likelihood PY |X given the
conditional independent structure among the samples.

Note that the assumption ℓ(W,Zi) being bounded is a
sufficient condition for our previous results and is adopted
to circumvent the technical difficulty of exchanging the order
of integration and Taylor expansion as well as the order of
integration and limits.

V. EXAMPLE

In this section, we will consider an example beyond the
bounded loss function. It can be shown that most of our
conclusions still hold under this setting.

Estimating the mean. Let S = {Zi}ni=1 be the training
set, where Zi is a d dimensional vector sampled i.i.d. from
µ = N (0d, (

1√
2β

)2Id). We consider the problem of learning
the means of the distribution µ. For simplicity, we consider
d = 1. We adopt square error ℓ(w,Z) ≜ ∥w − Z∥2 as the
loss function and choose our prior distribution to be π(w) =
1√
π
exp(−w2).

In this simple example, we can calculate the joint sym-
metrized KL information between S and W as

γgen(PW |S , µ) = ISKL(W ;S) =
γ2

nβ(1 + γ)
, (32)

and the individual sample symmetrized KL information be-
tween W and Zi

ISKL(W ;Zi) =
γ2

n2β(1 + γ) + γ2(n− 1)
. (33)

From (32) and (33), we get
n∑

i=1

ISKL(W ;Zi)− ISKL(W ;S) = Θ

(
1

n2

)
(34)

= o(ISKL(W ;S)),

which shows that Theorem 3 still holds, despite the fact we
are not considering a bounded loss function.

We further investigate the Jensen gap term Ji(w, zi), since
as stated previously, the key to prove Theorem 3 is that the
effect of variable zi is order-wise smaller than that of w. In
estimating the mean problem, we can calculate that

J
[n]
i (w, zi) =w2Θ

(
1

n

)
+ wz1Θ

(
1

n2

)
+ z21Θ

(
1

n3

)
+Θ

(
1

n2

) (35)

where all terms represented by big O notation were uniformly
small. We can see that the contribution of zi term is Θ

(
1
n2

)
,

which is indeed order-wise smaller than those terms not
containing zi.

Finally, we provide a similar analysis of mutual information.

I(W ;Zi) =
1

2
log

(
1 +

γ2

n2(1 + γ)β + (n− 1)γ2

)
= Θ

(
1

n2

)
,

(36)

and
I(W ;S) =

1

2
log

(
1 +

γ2

nβ(1 + γ)

)
∼ 1

2
· γ2

nβ(1 + γ)

=
1

2
ISKL(W ;S),

(37)

which corresponds to our result in Theorem 4.
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[24] D. P. Palomar and S. Verdú, “Lautum information,” IEEE transactions
on information theory, vol. 54, no. 3, pp. 964–975, 2008.

[25] O. Catoni, “PAC-Bayesian supervised classification: the thermodynamics
of statistical learning,” arXiv preprint arXiv:0712.0248, 2007.

[26] Y. Zhu and Y. Bu, “Information-theoretic analysis of the gibbs algorithm:
An individual sample approach,” arXiv preprint arXiv:2410.12623,
2024.

[27] X. Zou, S. M. Perlaza, I. Esnaola, E. Altman, and H. V. Poor, “The
worst-case data-generating probability measure in statistical learning,”
IEEE Journal on Selected Areas in Information Theory, vol. 5, pp. 175–
189, 2024.

[28] M. Raginsky, A. Rakhlin, M. Tsao, Y. Wu, and A. Xu, “Information-
theoretic analysis of stability and bias of learning algorithms,” in 2016
IEEE Information Theory Workshop (ITW), pp. 26–30, IEEE, 2016.

[29] J. Rissanen, “Universal coding, information, prediction, and estimation,”
IEEE Transactions on Information theory, vol. 30, no. 4, pp. 629–636,
1984.

[30] B. S. Clarke and A. R. Barron, “Information-theoretic asymptotics of
Bayes methods,” IEEE Transactions on Information Theory, vol. 36,
no. 3, pp. 453–471, 1990.

[31] B. S. Clarke and A. R. Barron, “Jeffreys’ prior is asymptotically
least favorable under entropy risk,” Journal of Statistical planning and
Inference, vol. 41, no. 1, pp. 37–60, 1994.

[32] D. R. Brillinger, “A note on the rate of convergence of a mean,”
Biometrika, vol. 49, no. 3/4, pp. 574–576, 1962.

[33] H. P. Rosenthal, “On the subspaces of Lp (p > 2) spanned by sequences
of independent random variables,” Israel Journal of Mathematics, vol. 8,
pp. 273–303, 1970.

2024 IEEE Information Theory Workshop (ITW)

542
Authorized licensed use limited to: University of Florida. Downloaded on January 27,2025 at 05:11:42 UTC from IEEE Xplore.  Restrictions apply. 


