Publications

Journal Publications

  1. Class-wise Generalization Error: An Information-Theoretic Analysis
    F. Laakom, M. Gabbouj, J. Schmidhuber, Y. Bu.
    Transactions on Machine Learning Research (TMLR), 2025.
    Short version appeared at the ICML Workshop on PAC-Bayes Meets Interactive Learning, Honolulu, HI, Jul. 2023.

  2. Information-Theoretic Characterizations of Generalization Error for the Gibbs Algorithm
    G. Aminian*, Y. Bu*, L. Toni, M. R. Rodrigues, G. W. Wornell (* equal contribution).
    IEEE Transactions on Information Theory, vol. 70, no. 1, pp. 632–655, Jan. 2024.

  3. A Maximal Correlation Framework for Fair Machine Learning
    Y. Bu*, J. K. Lee*, P. Sattigeri, R. Panda, G. W. Wornell, L. Karlinsky, R. S. Feris (* equal contribution).
    Entropy, vol. 24, no. 4, p. 461, Mar. 2022.

  4. Population Risk Improvement with Model Compression: An Information-Theoretic Approach
    Y. Bu, W. Gao, S. Zou, V. V. Veeravalli.
    Entropy, vol. 23, no. 10, p. 1255, Sept. 2021.

  5. Tightening Mutual Information Based Bounds on Generalization Error
    Y. Bu, S. Zou, V. V. Veeravalli.
    IEEE Journal on Selected Areas in Information Theory, vol. 1, pp. 121–130, May 2020.

  6. Adaptive Sequential Machine Learning
    C. Wilson, Y. Bu, V. V. Veeravalli.
    Sequential Analysis, vol. 38, no. 4, Oct. 2019. (16th Abraham Wald Prize)

  7. Linear-Complexity Exponentially-Consistent Tests for Universal Outlying Sequence Detection
    Y. Bu, S. Zou, V. V. Veeravalli.
    IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 2115–2128, Apr. 2019.

  8. Estimation of KL Divergence: Optimal Minimax Rate
    Y. Bu*, S. Zou*, Y. Liang, V. V. Veeravalli (* equal contribution).
    IEEE Transactions on Information Theory, vol. 64, no. 4, pp. 2648–2674, Apr. 2018.
    Code available at GitHub

Conference and Workshop Publications

2026

  • In-Context Watermarks for Large Language Models
    Y. Liu, X. Zhao, C. Kruegel, D. Song, Y. Bu
    To appear in, International Conference on Learning Representations (ICLR), Rio de Janeiro, Brazil, Apr. 2026. (acceptance rate: 28%)
    Short version at ICML 2025 Workshop on Reliable and Responsible Foundation Models, Vancouver, Canada, Jul. 2025.

2025

2024

2023

Before 2023

  • Selective Regression under Fairness Criteria
    A. Shah*, Y. Bu*, J. K. Lee, P. Sattigeri, R. Panda, S. Das, G. W. Wornell (* equal contribution)
    International Conference on Machine Learning (ICML), Baltimore, MD, Jul. 2022. (acceptance rate: 22%)

  • Fair Selective Classification via Sufficiency
    Y. Bu*, J. K. Lee*, D. Rajan, P. Sattigeri, R. Panda, S. Das, G. W. Wornell (* equal contribution)
    International Conference on Machine Learning (ICML), virtual, Jul. 2021. (Oral, Top 3%)