Publications
Journal Publications
Information-theoretic Characterizations of Generalization Error for the Gibbs Algorithm
G. Aminian*, Y. Bu*, L. Toni, M. R. Rodrigues, G. W. Wornell (* equal contribution)
IEEE Transactions on Information Theory, vol. 70, no. 1, pp. 632-655, Jan. 2024.
A Maximal Correlation Framework for Fair Machine Learning
Y. Bu*, J. K. Lee*, P. Sattigeri, R. Panda, G. W. Wornell, L. Karlinsky, R. S. Feris (* equal contribution)
Entropy 24, no. 4, pp. 461, Mar. 2022.
Population Risk Improvement with Model Compression: An Information-Theoretic Approach
Y. Bu, W. Gao, S. Zou, V. V. Veeravalli.
Entropy 23, no. 10, pp. 1255, Sept. 2021.
Tightening Mutual Information Based Bounds on Generalization Error
Y. Bu, S. Zou, V. V. Veeravalli.
IEEE Journal on Selected Areas in Information Theory, vol. 1, pp. 121 - 130, May 2020.
Adaptive Sequential Machine Learning
C. Wilson, Y. Bu, V. V. Veeravalli.
Sequential Analysis, vol. 38, no. 4, Oct. 2019. (16th Abraham Wald Prize)
Linear-Complexity Exponentially-Consistent Tests for Universal Outlying Sequence Detection
Y. Bu, S. Zou, V. V. Veeravalli.
IEEE Transactions on Signal Processing, vol. 67, no. 8, pp. 2115-2128, Apr. 2019.
Estimation of KL Divergence: Optimal Minimax Rate
Y. Bu*, S. Zou*, Y. Liang, V. V. Veeravalli. (*equal contribution),
IEEE Transactions on Information Theory, vol. 64, no. 4, pp. 2648-2674, Apr. 2018.
Code available at Github
Conference and Workshop Publications
2024
Information-theoretic Analysis of the Gibbs Algorithm: An Individual Sample Approach
Y. Zhu, Y. Bu
to appear in, IEEE Information Theory Workshop (ITW), Shenzhen, China, Nov. 2024.
SAUC: Sparsity-Aware Uncertainty Calibration for Spatiotemporal Prediction with Graph Neural Networks
D. Zhuang, Y. Bu, G. Wang, S. Wang, J. Zhao
to appear in, International Conference on Advances in Geographic Information Systems (ACM SIGSPATIAL), Atlanta, GA, Oct. 2024
Short version at NeurIPS Workshop on Temporal Graph Learning (TGL), New Orleans, LA, Dec. 2023. (Spotlight talk)
Operator SVD with Neural Networks via Nested Low-Rank Approximation
J. J. Ryu, X. Xu, H. SM Erol, Y. Bu, L. Zheng, G. W. Wornell
International Conference on Machine Learning (ICML), Vienna, Austria, Jul. 2024. (acceptance rate: 28%)
Short version at NeurIPS Workshop on Machine Learning and the Physical Sciences, New Orleans, LA, Dec. 2023.
Code available at Github
Group Fairness with Uncertainty in Sensitive Attributes
A. Shah, M. Shen, J. J. Ryu, S. Das, P. Sattigeri, Y. Bu, G. W. Wornell
IEEE International Symposium on Information Theory (ISIT), Athens, Greece, Jul. 2024.
Full version at ICML workshop on Spurious Correlations, Invariance and Stability, Honolulu, HI, Jul. 2023.
2023
2022
Selective Regression under Fairness Criteria
A. Shah*, Y. Bu*, J. K. Lee, P. Sattigeri, R. Panda, S. Das, G. W. Wornell (* equal contribution)
International Conference on Machine Learning (ICML), Baltimore, MD, Jul. 2022. (acceptance rate: 22%)
Before 2022
Fair Selective
Classification via Sufficiency
Y. Bu*, J. K. Lee*, D. Rajan, P. Sattigeri, R. Panda, S. Das, G. W. Wornell. (* equal contribution)
International Conference on Machine Learning (ICML), virtual, Jul. 2021. (Oral, Top 3%)
|